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Executive Summary

Conventional query answering requires the user to have detailed knowledge of the database
schema. As the size and the number of types of databases in the system increase, it becomes
impractical for the user to know the entire database schema. Under this contract, we
developed a cooperative information system that uses a knowledge base to provide
approximate matching of different data structures and schemas. Further, based on the user
profile and application, the system is capable of query relaxation and modification, and is able
to provide approximate answers when an exact query answer is not available. The user can
also provide explicit relaxation parameters such as approximate range, near to, similar to, as
well as relaxation. We have developed a prototype system, CoBase, that supports structured
data for transportation applications, and have also extended the cooperative methodology to
the image domain (e.g., GIS and medical images).

The relaxation manager controls the query relaxation process based on the user profile, query
context, and query conditions. The relaxation control (e.g., relaxation order, relaxable range,
unacceptable list) not only reduces search scope but also provides the user with more precise
answers.

We developed a structured way to represent the knowledge called Type Abstraction Hierarchy
(TAH). Object types, tuples, and attributes are represented at different abstraction levels in
the TAH. Therefore, TAH provides multi-level knowledge representation (from various
levels of concept to indexes) and is more general than the conventional object data model
representation, which consists of two levels of knowledge representation. The TAH can be
generated automatically for structured data (e.g., database), and we have also extended it to
image data (e.g., features). A knowledge editor will be developed to enable the user or
domain expert to edit or manually create the TAH. Since the knowledge update to the TAH is
localized, it eases knowledge acquisition and maintenance. The detailed results are
summarized in the paper entitled “An Error-Based Conceptual Clustering Method for
Providing Approximate Query Answers,” CACM Virtual Extension
(http://www/acm.org/pubs/CACM/extension).

Associative query answering provides additional relevant information to the queries that is not
explicitly asked, but is of interest to the user. For a given query, associative information may
be derived from past user query cases based on the user type and the query context. A case-
based reasoning approach that matches query features has been developed. Query feature
consists of the query topic, the output attribute list, and the selection constraints. The
similarity of the query feature is defined and can be evaluated from the semantic model that is
derived from the database schema. The results are summarized in [CZ97].



For the purpose of scalability and reuse, we incorporated the cooperative operations into three
mediators: relaxation mediator, association mediator, and explanation mediator. The
relaxation mediator provides approximate matching of information from different sources
with different granularities, scope, and abstraction. The association mediator provides
relevant query information not asked by the user. The explanation mediator is based on the
relaxation action traces and describes the relaxation process and the quality of the query
answer. These mediators can be distributed, interconnected and reused, thus our mediator
architecture is scalable. In our proposed mediator architecture, there are two aspects of
scalability: scalability of the cooperative mediators, and scalability of the mediator
architecture. Let us first address the scalability of the cooperative mediators.

The relaxation mediator utilizes a knowledge structure—TypeAbstraction Hierarchies
(TAHs)—that provide multiple-level knowledge representation. For each database attribute
type, its TAH is a classification hierarchy of its possible values. Operations are provided to
traverse the hierarchy, such as generalization (up) and specialization (down). Query condition
values are relaxed to their semantic neighbors until an approximate answer is produced.
Explicit relaxation operations and control of the relaxation process can also be provided by
the user. The TAH can be generated automatically from relational databases for both
rumerical and non-numerical attribute values [CCHY96]. The computation time required to
generate the TAH increases approximately in the order of square with the number of tuples.
We have also generalized the methodology to generate TAH for spatial and temporal features
of the image data. Thus, spatial as well as temporal relaxation can be performed. We are able
to process spatial queries based on spatial feature characteristics and interrelationships rather
than on pixels, thus reducing the query processing time. Based on application context and the
user’s constraints and requirements, the relaxation manager reduces the search scope and
generates more accurate answers.

Explanations may occur at many points during the relaxation process. The user can select
paragraphs, sentences, or words in the explanation for definition, elaboration, justification,
etc. The explanation mediator takes the action traces of the cooperative operations, and puts
the explanation goals on the trace object.

The size and processing time of the trace scales linearly with the number of actions performed
by the mediator (typically 10 to 50 actions per query). The invocation rules determine when
explanation events occur. The invocation rules, which are based on the trace object types and
user model types, produce the explanation goal. The explanation operators determine the
content of explanations. The explanation templates are associated with types, not instances,
and hence have good reuse properties. Based on the user models, the mediator generates the
appropriate explanation text for the user. The algorithms used in explanation are summarized
in [MC99].

Let us now discuss the scalability of the cooperative mediator architecture. The cooperative
mediator is a software module comprised of the following components:




* Precondition. This component specifies the data to be imported into the local
mediation process. The condition will be a statement of the data types and
qualifications of the necessary data conditions. Specifically, the preconditions are
queries to the Intelligent Directory/Dictionary or other mediators specifying tho
data to be retrieved and the constraints that must be satisfied. To each data i mput
we attach a weight specifying the input degree of certainty. :

® Postcondition. This component specifies the information abstraction produced by
the mediator. It will be a definition of the abstract data types produced and the
constraints that are satisfied by the output information. A mediator's postcondition
will specify the certainty of its output abstraction.

e Mediation. This component performs the actual abstraction of the mediator. The
mediator takes the input specified by the precondition, applies the context-specific
knowledge encoded in the mediation component, and produces abstractions
characterized by the postcondition.

The cooperative mediators are able to transform lower-level, heterogeneous, distributed data
and knowledge into a higher level of abstraction.

Since the mediators have a uniform interface, they can be interconnected. Each mediator can
use the output of other mediators as input. Further, mediator protocol are developed for them
to communicate and interact with each other for performing such operations as negotiations,
process binding, recovery, commitments, etc. Therefore, out mediator architecture has an
infrastructure supporting a large number of cooperative mediators for intelligent integration of
information sources. For a more detailed discussion, see [CYC96].

Most database interfaces provide poor guidance for ad hoc query formulation which burdens
the user to learn or to know precisely the query language and the database schema. An ideal
query interface should assume that users may have little technical knowledge and possibly
possess no knowledge concemning the schema of the database. Many current and future
applications of DBMSs, e.g., scientific computing and decision support, require user
interaction based on many ad hoc queries, instead of the conventional innovations of pre-
compiled and stored application programs. As database schema becomes larger and more
complex, there is a need to develop a high-level query interface to allow users to specify
queries by high-level concepts and constraints.

We developed a new approach for query formulation based on a semantic graph model; this
provides a semantic representation of the data in the database augmented with user-defined
relationships. The graph model can be semi-automatically generated from the database
schema. The query formulator allows users to specify their requests and constraints in high-
level concepts to formulate queries instead of using a database query language. The query
formulator completes a query based on the user input and ranks the formulated query
candidates according to the probabilistic information measure. English-like query
descriptions can also be provided for the user to resolve ambiguity when multiple queries are
formulated from user input. Further, the system allows the user to interact with the system



and select the desired query. A prototype system using the proposed technology with a
multimodal interface consisting of GUI and voice interface has been implemented at UCLA.
The formulator is operating on top of the cooperative database system (CoBase) to formulate
SQL queries. The results are summarized in a report included in the Appendix entitled, -
"Query Formulation from High-level Concepts with Multi-modal Interface” [ZCKMB98].

Technology Transfer

CoBase technology has been successfully applied to the Electronic Warfare (EW) domain for
identifying emitter features under noisy conditions (with Lockheed Martin) and to the medical
domain for approximate matching of medical images by feature and content (with the UCLA
Medical School). A technology transfer was made to the DARPA logistics planning
application (GLAD), and an IFD was performed in May 1996 (with BBN). CoBase was also
successfully integrated in a DARPA Advanced Logistics Planning (ALP) demo in September
1997. CoBase demonstrated relaxation capabilities for a remote client on data provided by a
remote server using a CORBA interface.

Currently, under DARPA support, we developing relaxation plug-in modules for the ALP
clustering architecture.
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An Error-based Conceptual Clustering Method for Providing
Approximate Query Answers

Wesley W. Chu, Kuorong Chiang, Chih-Cheng Hsu, Henrick Yau

Knowledge discovered from databases can be used to abstract the data into high level concepts. The discovered
concept, or abstraction, makes it easier for users to understand the data and can be used to process queries ‘intelli-
gently [2, 11,9, 5]. In particular, abstraction can be used to derive approximate answers—when the objects request-
ed by a query are not available, the query conditions can be relaxed to their corresponding abstraction where
“neighborhood objects” can be found and returned as the approximate answers.

For clustering objects into “neighborhoods,” two methods can be used: statistical clustering and numerical
taxonomy [19], or conceptual clustering [15, 13, 14). In statistical clustering and numerical taxonomy, most simi-
larity metrics are defined between pairs of objects. Objects are pair-wise clustered in a bottom up manner until all
objects are in a single cluster. In conceptual clustering, the “goodness measures” are usually defined for the over-
all partitioning of objects instead of for pairs of objects. Clustering methods are designed to maximize the good-
ness measure. We find the conceptual clustering technique more suitable for approximate query answering [5, 8]
since the goodness measure can be directly related to the expected quality of approximate answers. By minimiz-
ing the expected error associated with the query relaxation, we are able to derive the best clustering of objects.

Most current conceptual clustering systems only deal with non-numerical values. That is, the values are
categorical and can only be equal or not equal. These systems only consider frequency distribution of data because
they are concerned with the grouping of values rather than the values themselves. Such clustering, however, is
inadequate for providing approximate answers as illustrated in the following example. Consider two clusters C; =
{0, 100} and C; = {0, 1}. C, and C, are equivalent based on frequency distribution alone because they both have
two distinct values. As approximate answers, however, they are very different because the values in C; are much
closer to each other than those in C,. Thus, for defining a neighborhood of objects, C; is much better than C,.

For discovering abstraction, therefore, a clustering method must consider both the frequency and the value
distributions of data. In this paper, we propose a DIstribution Sensitive Clustering (DISC) method that considers
both the frequency and the value distributions in discovering high level concepts from data.

The rest of the paper is organized as follows. After a brief discussion of prior related work, we develop the
notion of relaxation error as a quality measure for clusters. Then we present the DISC algorithm for generating
concept hierarchies, Type Abstraction Hierarchies (TAH), that minimize the relaxation error for a single attribute
as well as multiple attributes. Next, we present applications of TAH for providing approximate query answers and
for feature-based image retrieval. To show the effectiveness of our discovered knowledge for approximate query
answering, we compare the results derived from TAH generated by DISC with those of the traditional index tree.
Finally, we address the issue of maintaining TAHs and offer a feasible solution of keeping TAHS up to date.

Related Work
Prior work in discretization aims at decreasing cardinality of data by maximizing/minimizing certain heuristic
measures. A commonly used measure is"the information entropy [17]. It can be shown that the entropy is maxi-
mum when the data is partitioned most evenly. (We call this the ME method [3, 21]. ) However, no semantic mean-
ing is attached to the resultant clusters because the discretization is concerned with the frequency distribution rather
than the value distribution in the cluster. Therefore, the ME method is not suitable for abstracting numerical data.

COBWERB [10], a conceptual clustering system, uses category utility (CU) as a quality measure to classi-
fy the objects described by a set of attributes into a classification tree. Formally, for a partition from a class C to
N mutually exclusive classes C;,...,Cy, the category utility (CU) is defined as the increase in the average class...
goodness!. That is, ZN

= P(CUG(Cy) — G(C)

CU(C),...CN) = —=4=l N (1

where P(Cy) is the occurrence probability of C; in C, and G(C,) and G(C) are the goodness functions for C; and
C, respectively. That is,
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where A is the set of all the attributes, and X% and X“ are the distinct values of attribute a in C; and C respeétively.

COBWERB cannot be used for abstracting numerical data; it only deals with categorical data. Moreover, its
classification tree serves as the database for the instances and requires a large storage space. Furthermore, match-
ing of objects with existing classes is time consuming. For providing approximate answers, we want to build a clas-
sification tree in addition to the original database. The tree can be viewed as an index so that its storage and tra-
versal should be very efficient.

CLASSIT [12], an extension of the COBWEB system, classifies numerical attributes where each attribute
is normally distributed. Concepts are represented in terms of mean and standard deviation (o). 1/0 is used as the
quality measure for a concept and the data is classified to maximize the weighted sum of 1/0. The problem of using
CLASSIT for approximate query answering is that data are assumed to be normally distributed. This is not true in
many cases; our experience with a transportation database shows many numerical attributes are skewed and multi-
modal. Further, we also observed multiple “impulse values” which represent occurrences of certain attribute val-
ues with a very high frequency. In addition, CLASSIT cannot represent concepts with a single value because o =
0, making 1/a = ==, To overcome this problem, CLASSIT introduces a system parameter called acuity which is the
minimum value allowed for o. Acuity avoids the infinite quality problem, but it may cause undesirable data clas-
sification for approximate query answering. For example, an impulse value, say v;, cannot be the only value in a
concept; to satisfy the acuity constraint, the concept is forced to include other values, say v;. Thus, whenever v; is
relaxed, it is relaxed to {v;, v;} which may be a very poor approximation for v;.

To remedy these shortcomings, we develop a new goodness measure for the classification of numerical
data in view of approximate query answering.

Relaxation Error—A Goodness Measure for Clustering Numerical Values

To deal with numerical values, we need to generalize category utility. To simplify our presentation, let us consid-
er the single-attribute case. For a class C = {x;,..., x,}, (3) reduces to

G(C) =) P(x)? 4
i=1 :

where x; is the i-th distinct attribute value and P(x,) is the occurring probability of x; in C.

The goodness measure can be interpreted as follows. The class C in (4) is represented by an urn of balls,
each of them representing an attribute value. The number of balls of a particular color represents the frequency of
occurrence of the corresponding attribute value. We randomly draw two balls from the umn, one at a time with
replacement. If the two balls have the same value, we score 1. Otherwise, we score 0. If we do this experiment a
large number of times, the expected score we have will be the goodness of the cluster G(C). Let s(x;, x;) be the
score for the drawn values x; and x;, then s(x;, x;)) = 1 if x; = x; and 0 otherwise. Thus, (4) becomes

GO = ZIZP(x,)P(x,)s(x., %) (5)
=1j=1
Equation (5) cannot serve as a quality measure for numerical values as illustrated in the following: con-
sider the two clusters C; = {0, 100} and C, = {0, 1} as mentioned in previously. According to (5), C; is as good
as Cy: G(C)) = G(C,) = 0.5. Intuitively, this is unsatisfying because the values in C, are much closer to each other
than those in C;. As a result, a label such as small can be attached to C; but not to C,. '
Based on the above observation, a good quality measure for numerical values can be derived by substitut-
ing s(x;, x;) in (5) with the absolute difference between x; and x;. The result is called the relaxation error of C,
RE(C). Formally,
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That is, RE(C) is the average pair-wise difference among values in C. Using RE(C) for the above example, we
have RE,(C) = 50 and RE(C;) = 0.5. Clearly, C; is much better than C,.
RE(C) can also be interpreted from the standpoint of query relaxation. Let us deﬁne the relaxation error
of x;, RE(x;), as the average difference from x; to x;, j = L,..., n. Formally,

RE\(x)) ZP(x,) | % — x| %)
=i
where P(x;) is the occurring probability of x; in C. RE|(x;) can be used to measure the quality of an approximate
answer where x; in a query is relaxed to x;, j = 1,..., n. Summing RE(x;) over all values x; in C, we have

RE\(C) = P(x)RE;(x,). )
=1

Thus, RE;(C) is the expected error of relaxing any value in C.

If RE,(C) is large, query relaxation based on C may produce very poor approximate answers. To overcome
this problem, we can partition C into sub-clusters to reduce relaxation error. Given a partition P = {C), C, ..., Cy}
of C, the relaxation error of the partition P is defined as

N
RE(P) =) P(CORE\(CY )
k=1

where P(Cy) equals the number of tuples in C; devided by the number of tuples in C. In general, RE|(P) < RE(C).
Using relaxation error, the category utility can be defined as the relaxation error reduction per sub-cluster,

that is,

¥ P(COI1 — RE(CY)] ~ [1 = RE,(O)] RE\(C) = D P(CORE\(CY)
CcU = N = N (10)

Relaxation Error for Multiple Attributes

As mentioned above, relaxation error is the expected pair-wise difference between values in a cluster. To extend
the notion of relaxation error from a single attribute to multiple attributes, we shall consider distance between
tuples instead of difference between values. Given two m-attribute tuples t; = {xy,..., x,,} and ; = {y1,..., ym}, their
distance is defined as

D(ti ) =, Wzl - (11)
=1 A

where W, and A, are the weight and the normalization constant for the k-th attribute, respectively. W, can be
assigned to reflect relative importance among attributes. A; is necessary for summing up differences from differ-
ent attributes because different attributes-have different distributions. For example, consider two attributes from the
AIRCRAFT relation (Table 5): Runway-Width and Max-Weight. Max-Weight has a much greater value range, so
its value differences tend to be much greater than that of Runway-Width and will dominate D(#;, t;). Thus, nor-
malization is necessary for summing up pair-wise differences from different attributes.

There are two possible normalization factors. One 18 Xpmax — Xmin, and another is RE(X), the relaxation
error of the attribute X. Both factors are based on pair-wise difference: Xuax = Xmin is the maximum pair-wise dif-
ference and RE,(X) is the average pair-wise difference. Xpmax — Xmin is much easier to compute but is easily sub-
jected to influence by out-liers of values. RE;(X) is more costly to compute but is not easily subjected to influence
from out-liers. Since the cost of computing RE(X) is small (linear with respect to the number of distinct values in
X), we select RE|(X) as the normalization factor.

To see the effect of the normalization factor, consider the attributes Runway-Width and Max-Weight again.
The relaxation error for Runway-Width and Max-Weight are 12.89 and 265,602.38, respectively. Using RE,(X) as
the normalization factor, a difference of 12.89 in Runway-Width is as significant as a differene of 265,602.38 in




Max-Weight.
Given a cluster of n m-attribute tuples C = {¢,,..., t,}, the relaxation error for C is defined as the average
pair-wise distance among tuples in C, that is,

RE(C) =+
m

> > P)P)D(t;, 1) (12)

i=lj=1

where P(t;) and P(t;) are the probabilities of tuples #; and #;, respectively. The division by m in (12) normalizes
RE(C) per attribute and allows us to compare relaxation errors computed from different numbers of attributes. The
category utility (CU) for multiple attributes can be obtained by simply substituting RE,(C) in Eq (10) by its multi-
attribute counterpart RE(C) in Eq (12).

The Clustering Algorithm

We shall now present a class of DISC algorithms for clustering numerical values. We shall present the algorithm
for a single attribute, and then extend it for multiple attributes.

The Clustering Algorithm for a Single Attribute

Given a cluster with n distinct values, the number of partitions is exponential with respect to n, so the best parti-
tion according to (10) takes exponential time to find. To reduce computation complexity, we shall only consider
binary partitions (i.e., N = 2 in (10)). Later we shall show a simple hill climbing strategy can be used for obtain-
ing N-ary partitions from binary partitions.

Our method is top down: we start from one cluster consisting of all the values of an attribute, and then we
find “cuts™ to recursively partition the cluster into smaller clusters. The partition result is a concept hierarchy
called Type Abstraction Hierarchy (TAH). The clustering algorithm is called the DISC (DlIstribution Sensitive
Clustering) Method and is given in Table 1.

In [7], an implementation of the algorithm BinaryCut is presented whose time complexity is O(n). Since
DISC needs to execute BinaryCut at most n — 1 times to generate a TAH, the worst case time complexity of DISC
is O(n?). (The average case time complexity of DISC is O(n log n).)

N-ary Partitioning

N-ary partitions can be obtained from binary partitions by a hill climbing method. Starting from a binary partition,
the sub-cluster with greater relaxation error is selected for further cutting. We shall use CU as a measure to deter-
mine if the newly formed partition is better than the previous one. If the CU of the binary partition is greater than
that of the tri-nary partition, then the tri-nary partition is dropped and the cutting is terminated. Otherwise, the tri-

nary partition is selected and the cutting process continues until it reaches the point where a cut decreases CU. The .|

Algorithm DISC(C)
if the number of distinct values € C < T, return /* T is a threshold */
let cut = the best cut returned by BinaryCut(C)
partition values in C based on cut ~
let the resultant sub-clusters be C, and C,
call DISC(C,) and DISC(C5)
Algorithm BinaryCut(C)
/* input cluster C = {x,..., X,} */
for h = 1 ton — 1 /* evaluate each cut */
Let P be the partition with clusters Cy = {xy,..., xx} and Ca{xp+1,..., X}
compute CU
if CU>maxCU then
max CU =CU, cut = h /* the best cut */
Return cut as the best cut

Table 1. The algorithms DISC and BinaryCut



Algorithm N-ary Partition(C)
let C; and C, be the two sub-clusters of C
compute CU for the partition Cy, C;
forN=2ton—1
let C; be the sub-cluster of C with maximum relaxation error call
Binary Cut to find the best sub-clusters C;; and Cj; of C;
compute and store CU for the partition Cy, . ., Ci—, Cj1, Cp, Civys .., Cn
if current CU is less than the previous CU
stop
else
replace C; by C;; and Cpp
/* the result is an N-ary partition of C */

Table 2. The N-ary partition algorithm

procedure is outlined in Table 2. Note that N-ary TAH can be generated by replacing BinaryCut with N-ary
Partition in DISC algorithm.

The Clustering Algorithm for Multiple Attributes

Query relaxation for multiple attributes using multiple single-attribute TAHs relaxes each attribute independently
disregarding the relationships that might exist among attributes. This may not be adequate for the applications
where attributes are dependent In addition, using multiple TAHs is inefficient since it may need many iterations
of query modification and database access before approximate answers are found. Furthermore, relaxation control
for multiple TAHs is more complex since there are a large number of possible orders for relaxing attributes. In gen-
~eral, we can only rely on simple heuristics such as best first or minimal coverage first ' to guide the relaxation.
These heuristics cannot guarantee best approximate answers since they are rules of thumb and are not necessarily
accurate.

Most of the above mentioned difficulties can be overcome by using Multi-attribute TAH (MTAH) for the
relaxation of multiple attributes. Although MTAHs can be generated from any set of attributes, MTAHs should be
generated only from semantically dependent attributes. Using MTAHs for query relaxation, interrelated attributes
can always be relaxed together. Approximate answers can be derived efficiently using MTAH because only a sin-
gle query modification and database access is necessary. The approximate answers derived by using MTAH are
better than those derived by using multiple TAHs.

To cluster objects of multiple attributes, DISC can be extended to M-DISC (shown in Table 3). The gen-
erated multi-dimensional TAHs are called MTAHs. The algorithm DISC is a special case of M-DISC, and TAH is
a special case of MTAH.

Let us now consider the time complexity of M-DISC. Let m be the number of attributes and n be the num-
ber of distinct attribute values. The computation of relaxation error for a single attribute takes O(n log n) to
complete [7]. Since the computation of CU involves computation of relaxation error for m attributes, its complex-
ity is O(mn log n). The nested loop in M-DISC is executed mn times, so the time complexity of M-DISC is O(m?n
log n). To generate an MTAH, it takes nd more than n calls of M-DISC, therefore, the worst case time complexi-

Algorithm M-DISC(C)
if the number of objects in C < T, return /* T is a threshold */
for each attributea = 1 tom
for each possible binary cut h
compute CU for h
if CU > MaxCU then /* remember the best cut */
MaxCU = CU, BestAttribute = a, cut = h
partition C based on cut of the attribute BestAttribute
" let the resultant sub-clusters be C, and C, :
call M-DISC(C,) and M-DISC(C>)

Table 3. The multi-attribute DISC (M-DISC) algorithm
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Algorithm gM-DISC(C)
if the number of objects in C < T, return /* T is a threshold */
for each attribute a = 1 tom
for each possible binary cut h
compute ARE, for h
if ARE, > MaxARE then /* remember the best cut */
MaxARE = ARE,, BestAttribute = a, cut = h
partition C based on cut of the attribute BestAttribute
let the resultant sub-clusters be C; and C;
call gM-DISC(C,) and gM-DISC(C5)

Table 4. The greedy M-DISC algorithm: gM-DISC

ty of generating an MTAH is O(m?n> log n). The average case time complexity is O(m?n*(log n)?) since M-DISC
needs only to be called log n times on the average.

gM-DISC: a Greedy M-DISC Algorithm

The time complexity of M-DISC can be greatly reduced if we are willing to accept an approximation. We shall
present the heuristic for obtaining the sub-optimal cuts and the resulted greedy M-DISC algorithm here. Later, we
shall show that the performance of the greedy M-DISC is comparable with that of the non-greedy M-DISC.

For ease of discussion, we shall say a partition is disjointed on an attribute a if the values of a are grouped
into non-overlapping ranges. In general, a partition will have only one disjointed attribute which among all attri
butes will have the largest reduction of relaxation error. Thus, the magnitude of CU is generally dominated by the
reduction of relaxation error on the disjointed attribute. (Recall that the meaning of CU is the relaxation error
reduction due to the partition.) Therefore, we may replace CU with the relaxation error reduction on the disjoint-
ed attribute without losing too much accuracy.

Let ARE, be the reduction of relaxation error for attribute a. Replacing CU with ARE, in M-DISC, we
have the greedy M-DISC (shown in Table 4).

The relaxation error reduction ARE, used in gM-DISC is normalized such that ARE, from different attri
butes can be compared. The worst case time complexity for generating an MTAH using gM-DISC is O(mn?) where
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Figure 1. The MTAH for AIRCRAFT
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Aircraft Length Runway Weight Storage

Type Takeoff  Landing  Width Max. Empty Space
C-5 13600 5000 90 769000 665000 21508
C-141B 9000 5000 90 343000 239000 10454
KC-10 11800 5400 90 590000 414000 11600
C-130E 6250 3000 60 173700 NULL 5173
C-130H 6250 3000 60 173700 NULL 5173
C-9A 8100 3200 10 108000 90000 4325
C-12 4500 4500 75 - 12500 11000 915
C-21 6000 3400 75 18300 13500 747
C-20 5000 5000 75 69700 44000 2518
C-23 4000 3000 60 ‘ 22900 16200 1690
B-707-300 10800 7000 90 336600 230000 5600
DC-8-33 9400 5500 90 315000 224000 10000
DC-8-50 9400 5500 90 315000 224000 10000
DC-8-61 10400 6100 90 325000 261000 8100
DC-8-62 11500 6100 90 - 350000 230000 8825
DC-8-63 10400 6100 90 355000 261000 10800
DC-8-71 8850 6100 90 355000 261000 10800
DC-8-73 9800 6100 90 355000 261000 10800
DC-10-10 9500 5800 90 440000 335000 11000
DC-10-30 11850 6100 90 572000 391000 11600
DC-10-40 10600 5800 90 572000 391000 11600
B-747SP 7500 5600 90 696000 410000 14100
B-747-100 9500 6600 90 750000 526400 17500
B-747-200C 11800 6600 90 775000 590000 17500
B-747-200F 10500 6600 90 775000 590000 17500
L-1011-100 10640 7300 90 466000 320000 10800
L-1011-500 9760 7300 90 496000 338000 10800
B-727-100 9200 4800 90 207500 160000 5600
L-100-30 6000 4900 75 155000 122000 5800

Table 5. The database table AIRCRAFT

m is the number of attributes and » is the number of distinct values. The average case time complexity is O(mn
log n).

An Example
We shall present an example here using the ATRCRAFT relation shown in Table 5. We use M-DISC to generate an

MTAH based on the six numerical attributes. Each attribute is assumed to be equally important in characterizing
an aircraft. In certain cases, however, this may not be true and different weights can be assigned to attributes for a
better classification of objects. Using equal weights, the resulting MTAH is shown in Figure 1.

One advantage of MTAH is that it is easy to understand. Each node of the MTAH stores conditions that
all instances covered by the node must satisfy. In addition, each node stores the cuts information which shows how
the objects are partitioned. For example, consider the three top level clusters. The aircrafts C-23,..., L-100-30 have
narrow runway (Runway-Width < 75), while the other aircrafts have wide (Runway-Width > 75). The wide air-
crafts are further classified by Max-Weight: the aircrafts L-727-100,..., L-1011-500 are light (Max-Weight =
496,000) while the aircrafts KC-10,..., B-747-200F are heavy (Max-Weight > 496,000). The rest of the MTAH can
be understood in the same manner.

Note that the relaxation errors (normalized by RE(C)) are computed (from Eq 12) and shown at each node.
Note that the relaxation errors of the MTAH are monotonically decreasing from the root to the leaves, indicating
the quality of nodes increases towards the leaves.
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Applications

Application to Approximate Query Answering
We shall now use an example to show how the TAHs generated by DISC can be used for providing approximate
answers. |

Example. Consider the query “find a éargo with size 300 square feet and weight 740 kg.”
The corresponding SQL query is
select CARGO-ID
from CARGOS
where SQUARE-FEET = 300 and WEIGHT = 740.

The query conditions are too specific; no answers are found for the query. To obtain approximate answers, the
query is modified by relaxing cargo size and weight according to the TAHs for SQUARE-FEET and WEIGHT (see
Figure 2). (These TAHs are generated by DISC from a transportation database for the CARGOS relation.) As a
result, the query is modified to

select CARGO-ID
from CARGOS
where 294 < SQUARE-FEET = 300 and 737 =< WEIGHT = 741.
The modified query is submitted to the database and the following cargo is returned:

CARGO-ID SQUARE-FEET WEIGHT
10 296 740

The quality of the answer can be measured by its relaxation error from equation (12). From the CARGOS

relation, we obtain A(SQUARE-FEET) = 11.95 and A(WEIGHT) = 9.88. Thus, assuming the two attributes
SQUARE-FEET and WEIGHT are equally important, the relaxation error is 0.168. This quality measure corre-

sponds to a 16.8% relaxation. A 100% relaxation corresponds to no query conditions on SQUARE-FEET and
WEIGHT.
If more answers are needed, the conditions can be further relaxed by moving one more step up the TAHs:

select CARGO-ID
from CARGOS
where 294 = SQUARE-FEET = 306 and 737 = WEIGHT = 749.

The following four cargos are returned for this query:

CARGO-ID SQUARE-FEET WEIGHT
10 296 740
21 301 737
30 304 746
44 306 745

For the above answers, the relaxation error is 0.334, which is greater than the previous one because the
values deviate more from the specified ones in this case. _

Thus, from the above example, we see that the TAHs generated by DISC can be used for relaxing query
conditions to obtain “neighborhood answers” as well as their quality measures.

Application to Feature-based Image Retrieval
Images can be retrieved based on features and contents [4, 16). Extracting the essential features that can capture
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Figure 3. An MTAH for 11 lung tumor contours generated by M-DISC based on area, circularity, and extrusive-
ness.

Figure 4. The CT scanned lung image for image 6 (in Figure 3) with the lung tumor contour outlined.
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An Error-based Conceptual Clustering Method for Providing
Approximate Query Answers |

Wesley W. Chu, Kuorong Chiang, Chih-Cheng Hsu, Henrick Yau

Knowledge discovered from databases can be used to abstract the data into high level concepts. The discovered
concept, or abstraction, makes it easier for users to understand the data and can be used to process queries'intelli-
gently [2, 11, 9, 5]. In particular, abstraction can be used to derive approximate answers—when the objects request-
ed by a query are not available, the query conditions can be relaxed to their corresponding abstraction where
“neighborhood objects™ can be found and returned as the approximate answers.

For clustering objects into “neighborhoods,” two methods can be used: statistical clustering and numerical
taxonomy [19), or conceptual clustering {15, 13, 14]. In statistical clustering and numerical taxonomy, most simi-
larity metrics are defined between pairs of objects. Objects are pair-wise clustered in a bottom up manner until all
objects are in a single cluster. In conceptual clustering, the “goodness measures” are usually defined for the over-
all partitioning of objects instead of for pairs of objects. Clustering methods are designed to maximize the good-
ness measure. We find the conceptual clustering technique more suitable for approximate query answering [35, 8]
since the goodness measure can be directly related to the expected quality of approximate answers. By minimiz-
ing the expected error associated with the query relaxation, we are able to derive the best clustering of objects.

Most current conceptual clustering systems only deal with non-numerical values. That is, the values are
categorical and can only be equal or not equal. These systems only consider frequency distribution of data because
they are concerned with the grouping of values rather than the values themselves. Such clustering, however, is
inadequate for providing approximate answers as illustrated in the following example. Consider two clusters C, =
{0, 100} and C, = {0, 1}. C, and C; are equivalent based on frequency distribution alone because they both have
two distinct values. As approximate answers, however, they are very different because the values in C; are much
closer to each other than those in C;. Thus, for defining a neighborhood of objects, C; is much better than C;.

For discovering abstraction, therefore, a clustering method must consider both the frequency and the value
distributions of data. In this paper, we propose a DIstribution Sensitive Clustering (DISC) method that considers
both the frequency and the value distributions in discovering high level concepts from data.

The rest of the paper is organized as follows. After a brief discussion of prior related work, we develop the
notion of relaxation error as a quality measure for clusters. Then we present the DISC algorithm for generating
concept hierarchies, Type Abstraction Hierarchies (TAH), that minimize the relaxation error for a single attribute
as well as multiple attributes. Next, we present applications of TAH for providing approximate query answers and
for feature-based image retrieval. To show the effectiveness of our discovered knowledge for approximate query
answering, we compare the results derived from TAH generated by DISC with those of the traditional index tree.
Finally, we address the issue of maintaining TAHs and offer a feasible solution of keeping TAHS up to date.

Related Work
Prior work in discretization aims at decreasing cardinality of data by maximizing/minimizing certain heuristic
measures. A commonly used measure is'the information entropy [17]. It can be shown that the entropy is maxi-
mum when the data is partitioned most evenly. (We call this the ME method (3, 21]. ) However, no semantic mean-
ing is attached to the resultant clusters because the discretization is concemed with the frequency distribution rather
than the value distribution in the cluster. Therefore, the ME method is not suitable for abstracting numerical data.
COBWERB {10], a conceptual clustering system, uses category utility (CU) as a quality measure to classi-
fy the objects described by a set of attributes into a classification tree. Formally, for a partition from a class C to
N mutually exclusive classes Cj,....Cn, the category utility (CU) is defined as the increase in the average class...

goodness'. That is, ZN
= P(CUG(C) — G(C)
CUC)aCn) = — =55 W

where P(C,) is the occurrence probability of Cy in C, and G(C,) and G(C) are the goodness functions for.C and
C, respectively. That is,
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where A is the set of all the attributes, and X{ and X“ are the distinct values of attribute a in C, and C respéEtively.

COBWERB cannot be used for abstracting numerical data; it only deals with categorical data. Moreover, its
classification tree serves as the database for the instances and requires a large storage space. Furthermore, match-
ing of objects with existing classes is time consuming. For providing approximate answers, we want to build a clas-
sification tree in addition to the original database. The tree can be viewed as an index so that its storage and tra-
versal should be very efficient.

CLASSIT [12], an extension of the COBWEB system, classifies numerical attributes where each attribute
is normally distributed. Concepts are represented in terms of mean and standard deviation (o). 1/c is used as the
quality measure for a concept and the data is classified to maximize the weighted sum of 1/¢. The problem of using
CLASSIT for approximate query answering is that data are assumed to be normally distributed. This is not true in
many cases; our experience with a transportation database shows many numerical attributes are skewed and multi-
modal. Further, we also observed multiple “impulse values” which represent occurrences of certain attribute val-
ues with a very high frequency. In addition, CLASSIT cannot represent concepts with a single value because o =
0, making 1/o = ., To overcome this problem, CLASSIT introduces a system parameter called acuity which is the
minimum value allowed for . Acuity avoids the infinite quality problem, but it may cause undesirable data clas-
sification for approximate query answering. For example, an impulse value, say v;, cannot be the only value in a
concept; to satisfy the acuity constraint, the concept is forced to include other values, say v;. Thus, whenever v;j is
relaxed, it is relaxed to {v;, v;} which may be a very poor approximation for v;.

To remedy these shortcomings, we develop a new goodness measure for the classification of numerical
data in view of approximate query answering.

Relaxation Error—A Goodness Measure for Clustering Numerical Values

To deal with numerical values, we need to generalize category utility. To simplify our presentation, let us consid-
er the single-attribute case. For a class C = {x,,..., x,}, (3) reduces to

G(C) =) P(x)? O
i=1 -

where x; is the i-th distinct attribute value and P(x;) is the occurring probability of x; in C.

The goodness measure can be interpreted as follows. The class C in (4) is represented by an um of balls,
each of them representing an attribute value. The number of balls of a particular color represents the frequency of
occurrence of the corresponding attribute value. We randomly draw two balls from the umn, one at a time with
replacement. If the two balls have the same value, we score 1. Otherwise, we score 0. If we do this experiment a
large number of times, the expected score we have will be the goodness of the cluster G(C). Let s(x;, x;) be the
score for the drawn values x; and x;, then s(x;, x;) = 1 if x; = x; and O otherwise. Thus, (4) becomes

G(O) = Z,Z P(x)P(x)s(x; x;) )
j=1j=1
. Equation (5) cannot serve as a quality measure for numerical values as illustrated in the following: con-
sider the two clusters C; = {0, 100} and C; = {0, 1} as mentioned in previously. According to (5), C, is as good
as Cy: G(Cy) = G(C,) = 0.5. Intuitively, this is unsatisfying because the values in C, are much closer to each other
than those in C;. As a result, a label such as small can be attached to C, but not to C;. '
Based on the above observation, a good quality measure for numerical values can be derived by substitut-
ing s(x;, x;) in (5) with the absolute difference between x; and x;. The result is called the relaxation error of C,
RE\(C). Formally,
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j=1j=1
That is, RE,(C) is the average pair-wise difference among values in C. Using RE;(C) for the above example, we
have RE,(C) = 50 and RE(C;) = 0.5. Clearly, C, is much better than C;.
RE,|(C) can also be interpreted from the standpoint of query relaxation. Let us deﬁne the relaxation error
of xi, RE\(x;), as the average difference from x; to x;, j = 1,..., n. Formally,

RE\(x) = P(x) | x ~ x| (7)
j=1
where P(x;) is the occurring probability of x; in C. RE(x;) can be used to measure the quality of an approximate
answer where x; in a query is relaxed to xj, j = 1,..., n. Summing RE|(x;) over all values x; in C, we have

RE\(C) =D P(x)RE\(x). (8)
i=1

Thus, RE,(C) is the expected error of relaxing any value in C.

If RE((C) is large, query relaxation based on C may produce very poor approximate answers. To overcome
this problem, we can partition C into sub-clusters to reduce relaxation error. Given a partition P = {C}, C, ..., Cn}
of C, the relaxation error of the partition P is defined as

N
RE\(P) = P(CORE{(Cp) 9)
k=1

where P(C}) equals the number of tuples in C; devided by the number of tuples in C. In general, RE|(P) < RE,(C).
Using relaxation error, the category utility can be defined as the relaxation error reduction per sub-cluster,
that is,

~_ P(COI1 — RE(CY] — [1 — RE(O)] RE(C)— >N P(CORE\(Cy)
CU= N = N (10)

Relaxation Error for Multiple Attributes

As mentioned above, relaxation error is the expected pair-wise difference between values in a cluster. To extend
the notion of relaxation error from a single attribute to multiple attributes, we shall consider distance between
tuples instead of difference between values. Given two m-attribute tuples t; = {x;,..., x,,} and t; = {y1,--, Ym}, their
distance is defined as

D(t» 1) =2, Wk—l—""Tk' (1)
k=1 k

where W; and A, are the weight and the normalization constant for the k-th attribute, respectively. Wy .can be
assigned to reflect relative importance among attributes. A, is necessary for summing up differences from differ-
ent attributes because different attributes.have different distributions. For example, consider two attributes from the
AIRCRAFT relation (Table 5): Runway-Width and Max-Weight. Max-Weight has a much greater value range, so
its value differences tend to be much greater than that of Runway-Width and will dominate D(t;, ¢;). Thus, nor-
malization is necessary for summing up pair-wise differences from different attributes.

There are two possible normalization factors. One is Xax — Xmin, and another is RE;(X), the relaxation
error of the attribute X. Both factors are based on pair-wise difference: xuar — Xpmin is the maximum pair-wise dif-
ference and RE,(X) is the average pair-wise difference. X,n,x — Xmin is much easier to compute but is easily sub-
jected to influence by out-liers of values. RE;(X) is more costly to compute but is not easily subjected to influence
from out-liers. Since the cost of computing RE;(X) is small (linear with respect to the number of distinct values in
X), we select RE(X) as the normalization factor.

To see the effect of the normalization factor, consider the attributes Runway-Width and Max-Weight again.
The relaxation error for Runway-Width and Max-Weight are 12.89 and 265,602.38, respectively. Using RE,(X) as
the normalization factor, a difference of 12.89 in Runway-Width is as s1gmﬁcant as a differene of 265,602.38 in

18




Max-Weight.
Given a cluster of n m-attribute tuples C = (1),..., 1,}, the relaxation error for C is defined as the average
pair-wise distance among tuples in C, that is,

n

RE(C) = =" > P(t)P(t)D(t;, 1;) . (12)
i=1j=1

3=

where P(t;) and P(t;) are the probabilities of tuples #; and t;, respectively. The division by m in (12) noi;;nalizes
RE(C) per attribute and allows us to compare relaxation errors computed from different numbers of attributes. The
category utility (CU) for multiple attributes can be obtained by simply substituting RE,(C) in Eq (10) by its multi-
attribute counterpart RE(C) in Eq (12).

The Clustering Algorithm

We shall now present a class of DISC algorithms for clustering numerical values. We shall present the algorithm
for a single attribute, and then extend it for multiple attributes.

The Clustering Algorithm for a Single Attribute

Given a cluster with n distinct values, the number of partitions is exponential with respect to n, so the best parti-
tion according to (10) takes exponential time to find. To reduce computation complexity, we shall only consider
binary partitions (i.e., N = 2 in (10)). Later we shall show a simple hill climbing strategy can be used for obtain-
ing N-ary partitions from binary partitions.

Our method is top down: we start from one cluster consisting of all the values of an attribute, and then we
find “cuts™ to recursively partition the cluster into smaller clusters. The partition result is a concept hierarchy
called Type Abstraction Hierarchy (TAH). The clustering algorithm is called the DISC (DIstribution Sensitive
Clustering) Method and is given in Table 1.

In [7], an implementation of the algorithm BinaryCut is presented whose time complexity is O(n). Since
DISC needs to execute BinaryCut at most n — 1 times to generate a TAH, the worst case time complexity of DISC
is O(n?). (The average case time complexity of DISC is O(n log n).)

N-ary Partitioning

N-ary partitions can be obtained from binary partitions by a hill climbing method. Starting from a binary partition,
the sub-cluster with greater relaxation error is selected for further cutting. We shall use CU as a measure to deter-
mine if the newly formed partition is better than the previous one. If the CU of the binary partition is greater than
that of the tri-nary partition, then the tri-nary partition is dropped and the cutting is terminated. Otherwise, the tri-

nary partition is selected and the cutting process continues until it reaches the point where a cut decreases CU. The

Algorithm DISC(C)
if the number of distinct values € C < T, return /* T is a threshold */
let cut = the best cut retummed by BinaryCut(C)
partition values in C based on cut ~
let the resultant sub-clusters be C; and C,
call DISC(C,) and DISC(C,)
Algorithm BinaryCut(C)
/* input cluster C = {x,..., x,} */
for A = 1 to n — 1 /* evaluate each cut */
Let P be the partition with clusters Cy = {x,..., x} and Cz{x,,+|, w Xn}
compute CU
if CU>maxCU then
max CU =CU, cut = h /* the best cut */
Return cut as the best cut

Table 1. The algorithms DISC and BinaryCut
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Algorithm N-ary Partition(C)
let C, and C, be the two sub-clusters of C
compute CU for the partition Cy, C;
forN=2ton -1
let C; be the sub-cluster of C with maximum relaxation error call
Binary Cut to find the best sub-clusters C;; and Cj; of C;
compute and store CU for the partition Cy, . ., Ci—;, C;1, Cpz, City, ..., Cn
if current CU is less than the previous CU
stop
else
replace C; by C;, and Cj,
/* the result is an N-ary partition of C */

Table 2. The N-ary partition algorithm

procedure is outlined in Table 2. Note that N-ary TAH can be generated by replacing BinaryCut with N-ary
Partition in DISC algorithm.

The Clustering Algorithm for Multiple Attributes

Query relaxation for multiple attributes using multiple single-attribute TAHs relaxes each attribute independently
disregarding the relationships that might exist among attributes. This may not be adequate for the applications
where attributes are dependent.’ In addition, using multiple TAH:s is inefficient since it may need many iterations
of query modification and database access before approximate answers are found. Furthermore, relaxation control
for multiple TAHs is more complex since there are a large number of possible orders for relaxing attributes. In gen-
eral, we can only rely on simple heuristics such as best first or minimal coverage first 7 to guide the relaxation.
These heuristics cannot guarantee best approximate answers since they are rules of thumb and are not necessarily
accurate.

Most of the above mentioned difficulties can be overcome by using Multi-attribute TAH (MTAH) for the
relaxation of multiple attributes. Although MTAHs can be generated from any set of attributes, MTAHs should be
generated only from semantically dependent attributes. Using MTAHs for query relaxation, interrelated attributes
can always be relaxed together. Approximate answers can be derived efficiently using MTAH because only a sin-
gle query modification and database access is necessary. The approximate answers derived by using MTAH are
better than those derived by using multiple TAHs.!

To cluster objects of multiple attributes, DISC can be extended to M-DISC (shown in Table 3). The gen-
erated multi-dimensional TAHs are called MTAHs. The algorithm DISC is a special case of M-DISC, and TAH is
a special case of MTAH.

Let us now consider the time complexity of M-DISC. Let m be the number of attributes and n be the num-
ber of distinct attribute values. The computation of relaxation error for a single attribute takes O(n log n) to
complete [7]. Since the computation of CU involves computation of relaxation error for m attributes, its complex-
ity is O(mn log n). The nested loop in M-DISC is executed mn times, so the time complexity of M-DISC is O(m?n?
log n). To generate an MTAH, it takes nd more than n calls of M-DISC, therefore, the worst case time complexi-

Algorithm M-DISC(C)
if the number of objects in C < T, return /* T is a threshold */
for each attributea = 1 tom
for each possible binary cut A
compute CU for h
if CU > MaxCU then /* remember the best cut */
MaxCU = CU, BestAttribute = a, cut = h
partition C based on cut of the attribute BestAttribute
let the resultant sub-clusters be C, and C,
call M-DISC(C,) and M-DISC(C5)

Table 3. The multi-attribute DISC (M-DISC) algorithm
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Figure 2. TAHs for SQUARE-FEET and WEIGHT generated by DISC from a transportation database. Higher
nodes have higher relaxation errors.

TUMOR ID AREA (pixel?) CIRCULARITY EXTRUSIVENESS

1 5952.5 1.15 1.03

2 819.5 2.17 1.02

3 743.5 2.8 1.04

4 699 1.1 1

5 307 1.12 1

6 1753.5 1.52 1.07

7 2203.5 1.59 o 1.04

8 2748.5 1.59 1.05

9 2754 1.27 1
10 2877.5 1.18 1
11 1478.5 5.17 2.16

Table 6. Measurement of features for eleven lung tumors

the specific aspects of the image object depends on context and image domains. Consider lung tumors as an exam-
ple, three features can be used to classify the shape of lung tumors: area, circularity, and extrusiveness, where cir-
cularity is defined as 27" and extrusiveness is defined as @xsemehiyouw [50] ( Based on this set of features, we
can use M-DISC to classify the images and generate an MTAH, as shown in Figure 3.

We can retrieve images with similar feature characteristics from the MTAH. The MTAH leaf nodes repre-
sent tumor contours obtained from CT scanned chest images. For example, contour 6 (in Figure 3) is taken from
the image in Figure 4. Using this MTAH, contours 7 and 8 are returned as the similar images of contour 6.

For contours with more complex shapes, additional features may be needed to capture the shape charac-
teristics. One approach is based on a prior shape knowledge to decompose the complex shape into several simple
ones [18]. We can represent these decomposed simple shapes by an object-oriented shape model which allows us
to selectively combine these simpler shapes for retrieving a specific image.

In many current image database systems, such as VIMS [1], similar images are retrieved based on mean
and standard deviations of each extracted feature. As a result, similarity is analyzed only based on each attribute
separately. Since these features may be dependent, such methods represent a shortcoming. In our approach, how-
ever, all the related features can be jointly considered, and thus, it yields more accurate feature clustering.

Performance Comparison of DISC with ME

Single Attribute

Empirical results based on a large transportation database show that clusters discovered by DISC have less relax-
ation error than those by the Maximum Entropy method (ME). It can be shown [6] that only when the data distri-
bution is symmetrical at the median will the ME method and DISC perform equally well. For skewed distributions,
which hold for most data in the transportation database, DISC performs better than ME. Empirical results show
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MTAH o¢MTAH ME-Tree E-S

accuracy 0.85 0.84 0.68 1.0
efficiency 0.54 0.53 0.64 0.011
relaxation error 1.14 1.17 1.57 1.0

Table 7. Performance comparison of the MTAH, gMTAH, ME tree, and the exhaustive search

that the performance improvement of DISC over ME increases as the skewness increases.

Multiple Attributes :
In addition to the relaxation error, we shall introduce two additional performance measures, accuracy of the answer
and efficiency of the retrieval’, to compare the performance of DISC with ME:

retrieved relevant answers
all relevant answers

accuracy of the answer =

retrieved relevant answers
all retrieved answers

efficiency of the retrieval =

where “all relevant answers” are the best k answers determined by exhaustive search. In general, there is a trade-
off between the two measures: the higher the accuracy of the answer, the lower the efficiency of the retrieval.

We generate two MTAHs (one from the algorithm M-DISC and another from the greedy gM-DISC) and
an ME tree’ based on attributes Longitudes and Latitudes of 972 geographical locations from a transportation data-
base. We generate 500 queries with the form: “find the k locations nearest to the target (long, lat)” where k is ran-
domly selected from 1 to 20, and long and lat are randomly generated based on the distributions from the location
relation in the database. To answer the query using the MTAHs or the ME tree, we first locate the most specific
node in the tree that “covers” (long, lat) and contains &’ locations where k” = k. Then we compute the &’ distances
to (long, lat) and use them to select the nearest k locations. The accuracy, efficiency, and the relaxation error from
the best k answers to the target location (long, lat), averaged over the 500 queries, are shown in Table 7. For easy
comparison, performance is given relative to that of the exhaustive search (E-S). We label the MTAH generated by
the greedy algorithm gM-DISC as gMTAH.

Notice that the answers provided by the MTAHs (i.e., MTAH and gMTAH) are more accurate (i.e.,
closer to the target location) than those by the ME tree. Further, the MTAHs are more efficient than the exhaustive
search, yet provide answers close to those generated by the exhaustive search with errors less than 17%. We also
note that MTAH and gMTAH yield comparable performances. This confirms that the heuristics used in the greedy
algorithm gM-DISC provides good approximation.

Maintenance of TAHs

Since the quality of TAH affects the quality of derived approximate answers, TAHs should be kept up to date. One
simple way for maintaining TAHs is to regenerate them whenever an update occurs. This approach is not desirable,
however, because it causes a lot of overhead for the database system. Although each update changes the distribu-
tion of data (thus changing the quality of the corresponding TAHs), it by itself may not be significant enough to
warrant a TAH regeneration. TAH regeneration is only necessary when the cumulative effect of updates has
greatly degraded the TAHs.

The quality of a TAH can be monitored by comparing the derived approximate answers to the expected
relaxation error which is computed at TAH generation time and recorded at each node of the TAH. For example,
consider the applications query mentioned earlier. The relaxation error of the first approximate answer is 0. 168.
From the TAHs in Figure 2, the expected quality of this approximate answer is 0.131 for SQUARE-FEET and
0.170 for WEIGHT, with an average quality of (0.131 + 0.170)/2 = 0.151. Comparison between the actual qual
ity (0.168) and the expected quality (0.151) of the node shows the difference is small, and therefore, the quality of
the TAH:s is still good and need not be updated.

When the derived approximate answers significantly deviate from the expected quality, then the quality of
the TAH is deemed to be inadequate and a regeneration is necessary. The following incremental TAH regeneration
procedure can be used. First, identify the node within the TAH that has the worst query relaxations. Apply partial
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TAH regeneration for all the database instances covered by the node. After several such partial regenerations, we
then initiate a complete TAH regeneration.

Conclusion

In this paper, we present a Multi-attribute DIstribution Sensitive Clustering method (M-DISC) for numerical
attribute values. For m attribute of n distinct values, M-DISC generates a Multi-attribute Type Abstraction
Hierarchy (MTAH) in O(m?n%(log n)?) time. gM-DISC, a greedy version of M-DISC, yields comparable result
with that of M-DISC but only takes O(mn log n) to generate an MTAH. Thus, gM -DISC is more suitable for tables
with a large number of tuples.

For clustering m dependent attributes, our experience have shown that the relaxation error from using
MTAH is smaller than from m single-attribute TAHs because single-attribute TAHs cannot take the attribute depen-
dency relationship into consideration. Further, using MTAH is more efficient than using multiple single-attribute
TAHs in processing queries because MTAH requires fewer relaxation steps than multiple single-attribute TAHs,
thus reducing the number of database access. '

We have used M-DISC to generate MTAHs for a large transportation database which consists of 94 rela-
tions, the largest one of which has 12 attributes and 195,598 tuples. M-DISC generates approximately 400 numer-
ical TAHs and MTAHEs in less than a few hours of processing time on a Sun Sparc 10 Workstation.

The generated TAHs and MTAHs are used in the Cooperative Database System (CoBase) [8] at UCLA for
providing approximate answers to structured data and for approximate matching of image features. The approxi-
mate query answers derived from MTAH:s are empirically evaluated in terms of accuracy, efficiency, and relaxation
error. The results reveal that the approximate query answers derived from the MTAH generated by DISC are bet-
ter than those derived from an index tree generated by the Maximum Entropy method.

Appendix. Comparison of Using MTAH to Multiple Single-Attribute TAHs for Query
Relaxation On Multiple Numerical Attributes

We shall use a simplified model to illustrate how the dependence relationships which are captured by MTAHs, but
not captured by single-attribute TAHS, is useful in guiding the relaxation process.

Considering data with two attributes, we can represent it as a 2-dimensional problem space with tuples rep-
resented as points distributed randomly on it. A single point P is chosen randomly as the query condition. The area
of consideration is restricted to P and the two closest (the notion for distance will be defined below) points to P,
denoted as A and B. The problem is to consider the relative effects of using an MTAH versus using 2 single-
attribute TAHs to relax the query conditions on the 2 dimensions in certain relaxation order. The goal is to obtain
the closest approximate answers.

Without loss of generality, consider A as the closest point to P. There are 3 possible results of relaxation.
The answers resulting from traversing the MTAH and single-attribute TAHs may cover {A, P}, {B, P}, or {A, B,
P} (see Figures 5 and 6). Since A is the closest point to P, {A, P} is considered to be the good answer, {B, P} is
considered to be the poor answer, and {A, B, P} is considered to be the average answer.

Atipute X Attrawie ¥ Attivuis X Atrinte Y AtiBule X Aiiribile ¥
) . /
ATAT ATAT ATA
4
A B A AP AP AP L I
Retaxatian yisldy {P,A,B) Ralnasiton yhebds [P.A) Retaxation yields {PA} sr (P.D)

Figure 5. Relaxation using multiple single-attribute TAHs
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Figure 6. Relaxation using an MTAH
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Analysis

Distance Measure
The distance between any two points R(Xg, Yg) and S(Xs, Ys) is

D(R, S) = (IXg — XsVREx + ([Yr — YsI)/RE, (13)
Since points are assumed to be randomly distributed, RE, = RE,. Thus
dR,S) = |Xp — Xs| + |Ygr — Vsl (14)

which reduces to the Manhattan distance between the points.
Lemma 1 Closest Distance for Single TAHs. Given three points in a one-dimensional space, the DISC cutting algo-

rithm always clusters the two closest points together.

Proof: In a single-dimensional case, d(R, S) = |[Xg — X;. For three points A,B,C projected on a line, there are
two possible cuts (AB, BC). DISC cuts on the longer of AB and BC to minimize relaxation error.
Lemma 2 Closest Distance for MTAHs. Given three points in a two-dimensional space, the M-DISC cutting algo-

rithm will always cluster the two closest points together.
Proof: For three points in a two-dimensional space, MTAH clusters two of the points together, minimizing the

relaxation error of the cluster. From (12), relaxation error of the cluster is:
RE(R, S) = d(R, 5)/4

Since M-DISC minimizes RE(R, S), d(R,S) is minimized. ,
Consider P as the query point and divide the problem space into 4 quadrants, with P at the center. There
are 3 possible topologies, depending on the relative positions of A and B, as shown in Figure 5:

Case 1: A and B are in opposite quadrants
In this case, the shortest Manhattan distance is PA. Applying Lemma 2, M-DISC will cluster A, P together. Thus,

using MTAH to guide relaxation always yields good results.
For single-attribute TAHs, there are three possibilities:

(@) IXp — Xal <|Xp — Xpl and |Yp — Ya| <|[Yp — VYj

(b) 1Xp — Xal <|Xp — Xpl and |Yp — Y4| > |Yp — Y4l

() IXp — Xal > |Xp — Xpl and |Yp — Ya| <|Yp — Yl

Applying Lemma 1, it is easy to determine that in case (a), DISC will cluster {A, P} together in both
dimensions. This yields good relaxation. In cases (b) and (c), DISC will cluster { A, P} together in one dimension
and {B, P} together in the other. Using the Minimum Coverage rule’, for any distribution, relaxation may cover

either A or B and the decision is random. As a result, considering all 3 cases, it yields good relaxation in 75% of
the time and yields poor relaxation in 25% of the time, while MTAH always yields good relaxation.

y y ¥
B R,
Y A A,

*B

cage 1: A.B in opposite quadrants  case 2: A.B in adjacent quadraniz  case 3: A.B in the same quadrant
Figure 7. Topologies of 3 points: P, A, and B
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Case 2: A and B are in adjacent quadrants
If d(A, P) = d(A, B), then relaxation using MTAH yields good results. If d(A, P) > d(A , B), then relaxation using
MTAH yields average results.

In case of single-attribute TAHs, there are some data distribution where DISC would cluster { A, P} togeth-
er in one attribute and {B, P} together in the other. As in Case 1, relaxation guided by single-attribute TAHs returns
poor answers. Relaxation using MTAH is superior since MTAH will always include the closest answer while sin-
gle-attribute TAHs may miss it.

Case 3: A and B are in the same quadrant
As in Case 2, we can show that relaxation using MTAHs would be good or average, while single-attribute TAHs
could miss the good answer.

The above analysis shows that using an MTAH offers better relaxation on multiple numerical attributes
than using multiple single-attribute TAHs. MTAHs successfully retrieve the best answer in all cases, while single-
attribute TAHs fail to retrieve the best answer in some cases. This is due to the fact that M-DISC considers infor-
mation from multiple attributes at the same time.
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'We introduce the term goodness for ease of presenting the quality of approximate query answers.

2A cut c is a value that separates a cluster of numbers {x I a = x = b} into two sub-clusters {xjJa =< x = ¢} and {x|c
< x = b}.

' 3Dependency here means that all the attributes as a whole define a coherent concept. For example, the length and
width of a rectangle are said to be “semantically” dependent. This kind of dependency should be distinguished
from the functional dependency in database theory.

4A more detailed comparison between MTAH and multiple TAHs is given in the Appendix.

5These measures are known as recall and precision in Information Retrieval.

6Since the classification tree generated by the ME method is balanced, it can be viewed as an efficient index.
"The rule of Minimum Coverage is used as the relaxation policy for multiple single-attribute TAHs. This rule states
that from N different TAHs, select the TAH that yields fewest number of answers so that it results in finer relax-

ation granularity.
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Abstract. A new generation of information systems that integrates knowledge base technology with database
systems is presented for providing cooperative (approximate, conceptual, and associative) query answering. Based
on the database schema and application characteristics, data are organized into Type Abstraction Hierarchies
(TAHs). The higher levels of the hierarchy provide a more abstract data representation than the lower levels.
Generalization (moving up in the hierarchy), specialization (moving down the hierarchy), and association (moving
between hierarchies) are the three key operations in deriving cooperative query answers for the user. Based on
the context, the TAHs can be constructed automatically from databases. An intelligent dictionary/directory in the
system lists the location and characteristics (e.g., context and user type) of the TAHs. CoBase also has a relaxation
manager to provide control for query relaxations. In addition, an explanation system is included to describe the
relaxation and association processes and to provide the quality of the relaxed answers. CoBase uses a mediator
architecture to provide scalability and extensibility. Each cooperative module, such as relaxation, association,
explanation, and TAH management, is implemented as a mediator. Further, an intelligent directory mediator is
provided to direct mediator requests to the appropriate service mediators. Mediators communicate with each other
via KQML. The GUI includes a map server which allows users to specify queries graphically and incrementally
on the map, greatly improving querying capabilities. CoBase has been demonstrated to answer imprecise queries
for transportation and logistic planning applications. Currently, we are applying the CoBase methodology to
match medical image (X-ray, MRI) features and approximate matching of emitter signals in electronic warfare
applications.

Keywords: Approximate query answering, query relaxation, associative query answering, explanation system,
mediator architecture, type abstraction hierarchy, conceptual clustering

1. Introduction

Consider asking a query of a human expert. If the posed query has no answer or the complete
data for an answer is not available, you do not simply get a null response. The human expert
attempts to understand the gist of your query, to suggest or answer related questions, to
infer an answer from data that is accessible, or to give an approximate answer. The goal
of cooperative database research is to create information systems with these characteristics
(Gaasterland et al., 1992). The key is the integration of a knowledge base which represents
the data semantics.

In conventional databases,if required data is missing, if an exact answer is unavailable,
or if a query is not well-formed with respect to the schema, the database just returns a null
answer or an error. An intelligent system would be much more resourceful and cooperative,

*  This work supported by ARPA contract F30602-94-C-0207.
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permitting conceptual level queries (containing concepts that may not be expressed in the
database schema) when the user does not know the precise schema, providing approximate
answers when some data is missing, or even volunteering associative (relevant) information
to the query answer. Cuppens and Demolombe (Cuppens and Demolombe, 1988) provide
cooperative answers by rewriting the query to add variables to the query vector, which
carry relevant information to the user. The rewrite is not a generalization of the query, it
is an extension of the query to provide more information. Motro (Motro, 1988) proposes
allowing the user to select the direction of relaxation and thus to indicate which relaxed
answers may be of interest. Hemerly, et al. (Hemerly et al., 1994) uses a predefined user
model and maintains a log of previous interactions to avoid misconstruction when providing
additional information. All the above approaches are rule-based and difficult to scale up.
To remedy this shortcoming, we will present a structured approach and its implementation
to cooperative query answering for database systems.

In this paper, we shall first present the concept of Type Abstraction Hierarchy (TAH)
(Chu et al., 1991, Chu and Chiang, 1994) to provide a structured approach for query modi-
fication. Methodologies for automatic TAH generation are discussed. Next, we present the
cooperative SQL primitives and selected examples. Then, we present the scalable cooper-
ative information system: the relaxation controls for providing efficient query processing
and filtering out unsuitable answers for the user, a TAH mediator for providing management
and editing of the TAHs in the system, the case-based approach for providing association
information to query answers, an explanation mediator, and the inter-mediator communi-
cations. Implementation issues are also discussed. The performance of CoBase from a set
of sample queries generated from the testbed is reported. Finally, we discuss the technol-
ogy transfer of CoBase to transportation, medical image databases, and electronic warfare

applications.

2. Structured Approach to Cooperative Query Answering
2.1. Query Relaxation via Type Abstraction Hierarchies

Cooperative query answering relaxes a query scope to enlarge the search range or relaxes an
answer scope to include additional information. Enlarging and shrinking a query scope can
be accomplished by viewing the queried objects at different conceptual levels, since an object
representation has wider coverage at a higher level and inversely, more narrow coverage
at a lower level. Although linking different level object representations can be made in
terms of explicit rules (Cuppens and Demolombe, 1988), such linking lacks a systematic
organization to guide the query transformation process. To remedy this problem, we propose
the notion of a type abstraction hierarchy (TAH) (Chu et al., 1991, Chu and Chen, 1994) for
providing an efficient and organized framework for cooperative query processing. A TAH
represents objects at different levels of abstraction. For example, in Figure 1, the Medium-
Range (i.e., from 4,000 te 8,000 ft.) in the TAH for runway-length is a more abstract
representation than a specific runway length in the same TAH (e.g., 6,000 ft). Likewise, SW
Tunisia is a more abstract representation than individual airports (e.g., Gafsa). A higher-
level and more abstract object representation corresponds to multiple lower-levels and more
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specialized object representations. Querying an abstractly represented object is equivalent
to querying multiple specialized objects.

A query can be modified by relaxing the query conditions via such operations as general-
ization (moving up the TAH) and specialization (moving down the TAH), e.g., from 6000ft
to Medium-Range to [4000ft, 8000ft]. In addition, queries may have conceptual conditions
such as “runway-length = Medium-Range.” This condition can be transformed into specific
query conditions by specialization. Query modification may also be specified explicitly by
the user through a set of cooperative operators such as ‘similar-to’, ‘approximate’, ‘near-to’,
etc. This approach was also adopted in the cooperative deductive databases by Gaasterland,
et al. (Gaasterland et al., 1992) for providing query relaxations.

Tunisia
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Figure 1. Type Abstraction Hierarchies

The notion of multi-level object representation is not captured by the conventional seman-
tic network and object-oriented database approaches for the following reasons: grouping
objects into a class and grouping several classes into a super-class only provide a common
“title” (type) for the involved objects without concern for the object instance values and
without introducing abstract object representations. Grouping several objects together and
identifying their aggregation as a single (complex) object does not provide abstract instance
representations for its component objects. Therefore, an object-oriented database deals with
information only attwo general layers: the meta-layer and the instance layer. Since forming
an object-oriented type hierarchy does not introduce new instance values, it is impossible
to introduce an additional instance layer. In the Type Abstraction Hierarchy, instances of a
super-type and a sub-type may have different representations and can be viewed at different
instance layers. Such multiple layer knowledge representation is essential for cooperative
query answering.

Knowledge for query relaxation can be expressed as a set of logical rules, but such a rule-
based approach (Cuppens and Demolombe, 1989, Hemerly et al., 1994) lacks a systematic
organization to guide the query transformation process. TAHs provides a much simpler
and more intuitive representation for query relaxation, and do not have the complexity
of the inference that exists in the rule-based system. As a result, the TAH structure can
easily support flexible relaxation control (see Section 5.2.1), which is important to improve
relaxation accuracy and efficiency. Further, knowledge represented in a TAH is customized,
thus changes in one TAH represent only a localized update and do not affect other TAHs,
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simplifying TAH maintenance (see Section 3.3). We have developed tools to generate TAHs
automatically from data sources (see Section 3), which enable our system to scale up and
extend to large data sources.

2.2. Properties of the Type Abstraction Hierarchy

Type Abstraction Hierarchy (TAH) is a representation for the abstraction of individual
types (atomic or tuple) at instance levels, which is different from the meta-level class/type
hierarchy in object-oriented systems.

In our notion of type abstraction, a type can be atomic T (for single attribute), or tuple
T : (Ti,...,Tm) (for multiple attributes), where T, ..., Ty are atomic types. Let us first
define the concept of type abstraction.

Type T" is an abstraction of type T, denoted as T < T", means the following:

1. For atomic types T and T”, each value in dom(T") represents single or multiple values
in dom(T'), where dom(T’) denotes the domain of type T and dom/(T") is the domain

of type T".
2. Fortupletypes T : (Th,...,Tm)and T": (T7,..., Tp,), Vi€ {1,---,m}, T; X T}.

Typically, the abstraction of a numerical type is a range (or interval) type while the ab-
straction of a nonnumerical type is a type of conceptual names (e.g., SW Tunisia), each
representing a set of values (e.g., Gafsa, El Borma). We can also assign conceptual names
to ranges (e.g., long runway).

A TAH is a tree structure constructed from a set of values of a base type, which is the
most specific type. All other types are abstraction of the base type or other abstract types.
The values of the base type are leaf nodes of the TAH. Conceptually, all leaf nodes have
the same depth in the TAH!. The values of the abstract types constitute the non-leaf nodes
of the TAH.

More formally, we denote the base type as T and all abstract types in the TAH as T", T",

.., T where T*) is the most general type. We have ‘

T<T <T"=<...2T®

For convenience of notation, T, T", T", . . . can also be re-written as 7@, T(), T2,
respectively. Values of type T() are at 7 levels above the leaf nodes for¢ = 1,...,k. If
we construct a TAH based on a single attribute, then the attribute is the base type. If we
construct a TAH based on multiple attributes chosen from one or more relations, then these
attributes constitute the base tuple type.

Intuitively, moving up a TAH maps a value of type T® to a value of more abstract
type T+1), which is more general; while moving down the TAH maps from a value of
more abstract type TG+1) to a set of values of type T, which is more specific, where
i=0,...,k — 1. Relaxation for a value (of the base type) is to map it to a more abstract
value and then map this value back to a set of base type values, thus covering a larger scope.

Let z(9 be a value of type T"), where i = 0,1, .. ., k. Since each value corresponds to a
node in the TAHs, moving from one node () up one level to another node z(+1) ina TAH
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can be accomplished by the function generalize(z(*)) and moving from a node z(*) down
to the bottom z(®) can be accomplished by specialize(z(")). Theresult of generalize(z(¥)
is always a single value and of a type more abstract than the type of (¥ (i.e., some z(+1)),
and values in specialize(z(¥) will be the leaf nodes (i.e., the value of the base type T(®))
as defined recursively,

) {0) if 1 = 0 (i.e., the leaf nod
a2} . if 1 = 0 (i.e., the leaf node)
specialize(z’™) = { Uzt~ specialize(z(-1) otherwise

where z0~1 € {z(-1|z() = generalize(z!~V)}.
Then a single step relaxation for a value z(® is defined as

relaz(z") = specialize(generalize(z™))

For a value =¥ of type T(9, it can be relaxed k — i times at most. A j-step relaxation
(wherej = 1,2,..., k)canbe obtained by applying generalize() j times and then applying
specialize() once to the result:

relaz® (D) = specialize(generalize’ (™)), wherei <k —j
Relaxation has the following property:
relazD(z() relazUt Nz, fori=0,...,k-2andj=1,...,k—i—1.

The above definition is also applicable to cases where the base types are tuple types (i.e.,
MTAHSs).

3. Automatic Knowledge Acquisifion

The automatic generation of knowledge base (TAHs) from databases is essential for CoBase
to be scalable to large systems. We have developed algorithms to automatically generate
TAHs based on database instances. A brief discussion about the algorithms and their
complexity are followed.

3.1. Numerical TAHs

COBWEB (Fisher, 1987), aconceptual clustering system, uses category utility (CU) (Gluck
and Corter, 1985) as a quality measure to classify the objects described by a set of attributes
into a classification tree. Formally, for a partition from a class C to N mutually exclusive
classes Cy, ..., Cn, the category utility (CU) is defined as the increase in the goodness? of
these classes after partition. That is,

N
CU(Cr,-,Cn) = Lzt P(Ck)f,(ck) -G(C)

0]
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where P(C}) is the occurrence probability of Cy in C, and G(Ci) and G(C) are the
goodness functions for Ci and C, respectively. That is,

G(C) =) > Pz5) @)
aEAz?EX:

GC)=Y > P@)? 3)
aEAz‘;GX"

where A is the set of all the attributes, and X§ and X are the distinct values of attribute a
in C, and C respectively.

COBWERB cannot be used for abstracting numerical data; it only deals with categorical
data. Moreover, its classification tree serves as the database for instances and requires a large
storage space. Furthermore, matching of objects with existing classes is time consuming.
For providing approximate answers, we want to build a classification tree that minimizes
the difference between the desired answer and the derived answer. Specifically, we use
relaxation error as a measure for clustering. The relaxation error (RE) is defined as the
average difference between the requested values and the returned values. RE; (C) can also
be interpreted from the standpoint of query relaxation. Let us define the relaxation error of
z;, RE\(z;), as the average difference from z; to ;, j=1,...,n, that is,

RE\(z:) =) P(z;)lz: — zj @)

j=1

where P(z;) is the occurrance probability of z; in C. RE)(z;) can be used to measure the
quality of an approximate answer where z; in a query is relaxed to z;, j=1,...,n. Summing
RE,(z;) over all values z; in C, we have

n
RE;(C) =) P(z:)REx(x:). )
i=1
Thus, RE,(C) is the expected error of relaxing any value in C.

If RE|(C) is large, query relaxation based on C' may produce very poor approximate
answers. To overcome this problem, we can partition C into sub-clusters to reduce relaxation
error. Given a partition P = {C1,C?3, ...,Cn} of C, the relaxation error of the partition P
is defined as

N
RE,(P) =) P(Cx)RE\(Ck) 6)
k=1 '
where P(C}) equals the humber of tuples in Cj devided by the number of tuples in C. In

general, RE,(P) < RE,(C).
Relaxation error is the expected pair-wise difference between values in a cluster. Toextend
the notion of relaxation error from a single attribute to multiple attributes, we shall consider
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distance between tuples instead of difference between values. Given two m-attribute tuples
ti = {T1,...,Tm} and t; = {y1, ..., ym}, their distance is defined as

D(tit;) =Y Wk%yl‘i ©)
k=1

where Wy, and Ay are the weight and the normalization constant for the k-th attribute,
respectively. W can be assigned to reflect relative importance among attributes. Ay is
necessary for summing up differences from different attributes because these attributes have
different distributions.

Given a cluster of n m-attribute tuples C = {t,,...,%,}, the relaxation error for C is
defined as the average pair-wise distance among tuples in C, that is,

RE(C) = £ 3°3" Pt)P() Dt 1) | @

i=1 j=1

where P(t;) and P(t;) are the probabilities of tuples t; and t;, respectively. The division
by m in (8) normalizes RE(C) per attribute and allows us to compare relaxation errors
computed from different numbers of attributes. The category utility (CU) for multiple
attributes can be obtained by simply substituting RE,(C) in Eq (9) by its muiti-attribute
counterpart RE(C) in Eq (8).

Using relaxation error, the category utility can be defined as the relaxation error reduction
per sub-cluster, that is,

_ AL P(Cu)1 - RE\(Ch)] — [1 - REY(C)]
- N
RE:(C) - T ey P(Ck)RE:(C)

= 2 : ©)
DIstribution Sensitive Clustering (DISC) (Chu and Chiang, 1994) partitions sets of numer-
ical values into clusters that minimize the relaxation error. We shall now present a class
of DISC algorithms for clustering numerical values. We shall present the algorithm for a
single attribute, and then extend it for multiple attributes.

cU

The Clustering Algorithm for a Single Attribute

Given a cluster with n distinct values, the number of partitions is exponential with respect to
n, so the best partition according to (9) takes exponential time to find. To reduce computation
complexity, we shall only consider binary partitions (i.e., N = 2 in (9)). Later we shall
show a simple hill climbing strategy can be used for obtaining /V-ary partitions from binary
partitions. )

Our method is top down: we start from one cluster consisting of all the values of an
attribute, and then we find “cuts™3 to recursively partition the cluster into smaller clusters.
The partition result is a concept hierarchy called Type Abstraction Hierarchy (TAH). The
clustering algorithm is called the DISC (DIstribution Sensitive Clustering) Method and is
given in Table 1.
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Algorithm DISC(C)
if the number of distinct values € C < T, retum /* T is a threshold */
let cur = the best cut retumed by BinaryCut(C)
partition values in C based on cur
let the resultant sub-clusters be C; and C2
call DISC(C,) and DISC(C?)

Algorithm BinaryCut(C)
/* input cluster C = {z1,...,Zn}*
for h=1ton — 1/* evaluate each cut */
Let P be the partition with clusters Cy = {z1,...,zp} and Cz = {Zp41, .-, Tn}
compute RE (P)
if RE1(P) < MinRE then
MinRE = RE|(P), cut = h /* the best cut */
Return cut as the best cut

Table 1. The algorithms DISC and BinaryCut

In (Chu and Chiang, 1994), an implementation of the algorithm BinaryCut is presented
whose time complexity is O(n). Since DISC needs to execute BinaryCut n — 1 times at
most to generate a TAH, the worst case time complexity of DISC is O(n?). (The average
case time complexity of DISC is O(nlogn).)

N -ary Partitioning

N -ary partitions can be obtained from binary partitions by a hill climbing method. Starting
from a binary partition, the sub-cluster with greater relaxation error is selected for further
cutting. We shall use CU as a measure to determine if the newly formed partition is better
than the previous one. If the CU of the binary partition is greater than that of the tri-nary
partition, then the tri-nary partition is dropped and the cutting is terminated. Otherwise,
the tri-nary partition is selected and the cutting process continues until it reaches the point
where a cut decreases CU. The procedure is outlined in Table 2.

The Clustering Algorithm for Multiple Attributes

Query relaxation for multiple attributes using multiple single-attribute TAHs relaxes each
attribute independently disregarding the relationships that might exist among attributes.
This may not be adequate for the applications where attributes are dependent.* In addition,
using multiple single attribute TAHs is inefficient since it may need many iterations of query
modification and database access before approximate answers are found. Furthermore,
relaxation control for multiple TAHs is more complex since there is a large number of
possible orders for relaxing attributes. In general, we can only rely on simple heuristics
such as best first or minimal coverage first to guide the relaxation (see Section 5.2.1). These
heuristics cannot guarantee best approximate answers since they are rules of thumb and not

necessarily accurate.
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Algorithm N-ary Partition(C)
let Cy and C; be the two sub-clusters of C
compute CU for the partition C, C2
for N=2ton-1
let C; be the sub-cluster of C with maximum relaxation error
call BinaryCut to find the best sub-clusters C;; and Cy2 of C;
compute and store CU for the partition C1, ..., Ci-1, Ci1, Ci2, Cit1, -, CN
if current CU is less than the previous CU
stop
else
replace C; by Cy; and Ci2
/* the result is an N-ary partition of C */

Table 2. The N-ary partition algorithm

" Algorithm M-DISC(C)
if the number of objects in C < T, return /* T is a threshold */
for each attributea=1tom
for each possible binary cut &
compute CU for b
if CU > MazCU then /* remember the best cut */
. MazCU = CU, BestAttribute =a, cut = h
partition C based on cut of the attribute BestAttribute
let the resultant sub-clusters be Cy and Cz
call M-DISC(C) and M-DISC(C?)

Table 3. Multi-attribute DISC (M-DISC) algorithm

Most of the above mentioned difficulties can be overcome by using Multi-attribute TAH
(MTAH) for the relaxation of multiple attributes. Since MTAHs are generated from seman-
tically dependent attributes, these attributes are relaxed together in a single relaxation step,
thus greatly reducing the number of query modification and database access. Approximate
answers derived by using MTAH have better quality than those derived by using multiple
single-attribute TAHs. MTAHs are context and user sensitive because a user may generate
several MTAHs with different attribute sets from a table. Should a user needs to create an
MTAH containing semantically-dependent attributes from different tables, these tables can
be joined into a single view for MTAH generation.

To cluster objects of multiple attributes, DISC can be extended to M-DISC (shown in Table
3). The generated multi-dimensional TAHs are called MTAHs. The algorithm DISC is a
special case of M-DISC, and TAH is a special case of MTAH. Let us now consider the time
complexity of M-DISC. Let m be the number of attributes and n be the number of distinct
attribute values. The computation of relaxation error for a single attribute takes O(n log n)
to complete (Chu and Chiang, 1994). Since the computation of CU involves computation
of relaxation error for m attributes, its complexity is O(mnlogn). The nested loop in
M-DISC is executed mn times, so the time complexity of M-DISC is O(m?n?logn). To
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generate an MTAH, it takes no more than n calls of M-DISC, therefore, the worst case time
complexity of generating an MTAH is O(m?n? logn). The average case time complexity
is O(m?n?(log n)?) since M-DISC needs only to be called log n times on the average.

3.2. Non-numerical TAHs

For generating TAHs with non-numerical attributes, the values are clustered based on
inter-attribute relationships. A Pattern-Based Knowledge Induction (PBKI) algorithm
(Merzbacher and Chu, 1993) is developed to compute the pair-wise correlations among
attribute values. Correlation is then used as a nearness measure in clustering the attribute
values. A more detailed discussion about the algorithm is presented in (Merzbacher and

Chu, 1993).

3.3. Maintenance of TAHs

Since the quality of TAH affects the quality of derived approximate answers, TAHs should
be kept up to date. One simple way for maintaining TAHs is to regenerate them whenever
an update occurs. This approach is not desirable because it causes overhead for the database
system. Although each update changes the distribution of data (thus changing the quality of
the corresponding TAHs), this may not be significant enough to warrant a TAH regeneration.
TAH regeneration is only necessary when the cumulative effect of updates has greatly
degraded the TAHs. The quality of a TAH can be monitored by comparing the derived
approximate answers to the expected relaxation error (for example, see Figure 8) which is
computed at TAH generation time and recorded at each node of the TAH. When the derived
approximate answers significantly deviate from the expected quality, then the quality of the
TAH is deemed to be inadequate and a regeneration is necessary. The following incremental
TAH regeneration procedure can be used. First, identify the node within the TAH that has
the worst query relaxations. Apply partial TAH regeneration for all the database instances
covered by the node. After several such partial regenerations, we then initiate a complete
TAH regeneration.

The generated TAHs are stored in Unix files and a TAH Manager (described in Section 5.3)
is responsible to parse the files, create internal representation of TAHs, and provide oper-
ations such as generalization and specialization to traverse TAHs. The TAH Manager also
provides a directory that describes the characteristics of TAHs (e.g., attributes, names, user
type, context, TAH size, location) for the users/systems to select the appropriate TAH to be
used for relaxation. '

Our experience in using DISC/MDISC and PBKI for ARPI transportation data-bases (94
relations, the biggest one of which has 12 attributes and 195,598 tuples) shows that the
clustering techniques for both numerical and non-numerical attributes can be generated
from a few seconds to a few minutes depending on the table size on a Sun SPARC 20
Workstation.
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4. Cooperative SQL (CoSQL)

4.1. CoSQL Cooperative Operators

The cooperative operations consist of the following four types: context free, context sensi-
tive, control, and interactive. The context free and context sensitive cooperative operators
can be used in conjunction with attribute values specified in the WHERE clause. The re-
laxation control operators can only be used on attributes specified in the WHERE clause,
and the control operators have to be specified in the WITH clause after the WHERE clause.
The interactive operators can be used alone as command inputs.

Context free operations.

Approximate operator, Av, relaxes the speciﬁed value v within the approximate range
that is predefined by the user. For example, A9am transforms into the interval (8am,
10am).

Between (v1,vq) specifies the interval for an attribute. For example, time between
(7am, A9am) transforms into (7am, 10am). The transformed interval is pre-specified
either by the user or the system.

Within (x4, 3}1, ...;In, Yn) specifies a region on a map by a closed polygon
(1‘1, Yl, ey Ty y,,).

Context sensitive.

Near-to X is used for specification of spatial nearness of object X. The “near-to” measure
is context and user sensitive. “Nearness” can be determined by the TAHs or specified
by the user. For example, near-to ‘BIZERTE’ requests the list of cities in the same
cluster as BIZERTE in a TAH, or cities located within a certain Euclidean distance
(depending on the context) from the city ‘BIZERTE’.

Similar-to X based-on ((a1 w)(a2 wz)...(an wy)) is used to specify a set of objects
semantically similar to the target object X based on a set of attributes (@, az, ..., an)
specified by the user. Weights (wy, w, ..., wy,) may be assigned to each of the attributes
to reflect the relative importance in considering the similarity measure. The set of similar
objects can be ranked by the similarity. The similarity measures that computed from
the nearness (e.g. weighted mean square error) of the pre-specified attributes to that of
the target object. The set size is bound by a pre-specified minimum answer set size.

Control Operators.

Relaxation-order (a1, az, ..., @) specifies the order of the relaxation among the at-
tributes (a1, as, -..,an) (i.e., a; precedes a;y;). For example, relaxation-order
(runway_length, runway-width) indicates that if no exact answer is found, then
runway_length should be relaxed first. If still no answer is found, then relax the run-
way_width. If no relaxation-order control is specified, the system relaxes according to
its default relaxation strategy.
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e Not-relaxable (ay,as, ..., an) specifies the attributes (a1, a2, ..., a,,) that should not be
relaxed. For example, not-relaxable location name indicates that the condition
clause containing location_.name must not be relaxed.

e  Preference-list (vy,v2, ..., Un) specifies the preferred values (v1,v2, ..., Un) of a given
attribute, where v; is preferred over v;yy. As a result, the given attribute is relaxed
according to the order of preference that the user specifies in the preference list. For
example, the attribute “food style,” a user may prefer Italian food to Mexican food.
If there are no such restaurants within the specified area, the query can be relaxed to
include the foods similar to Italian food first, and then similar to Mexican food.

o Unacceptable-list (v1,va, ..., Vn) allows users to inform the system not to provide cer-
tain answers. This control can be accomplished by trimming parts of the TAH from
searching. For example, “avoid airlines X and Y™ tells the system that airlines X and
Y should not be considered during relaxation. It not only provides more satisfactory
answers to users, but also reduces search time.

e Use-TAH (TAH-name) allows users to specify the TAHs of their choices. For example,
a vacation traveler may want to find an airline based on its fare while a business traveler
is more concerned with his schedule. To satisfy the different needs of the users, several
TAHs of airlines can be generated, emphasizing different attributes (e.g., price and

nonstop flight).

e Relaxation-level (v) specifies the maximum allowable range of the relaxation on an
attribute, i.e., [0,].

e At least (s) specifies the minimum number of answers required by the user. CoBase
relaxes query conditions until enough number of approximate answers (i.e., = s)are

obtained.
User/System interaction operators.
e Nearer, Further provide users with the ability to control the “near-to” relaxation scope

interactively. Nearer reduces the distance by a pre-specified percentage while further
increases the distance by a pre-specified percentage.

4.2. Editing Relaxation Control Parameters

Users can browse and edit relaxation control parameters to better suit their applications (for
example, Figure 2). The parameters include the relaxation range for the “approximately-
equal” operator, the default distance for the “near-to” operator, the number of returned

tuples for the “similar-to” operator, efc.
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4.3. Examples

In this section, we present a few selected examples that illustrate the capabilities of the
cooperative operators. The corresponding TAHs used for query modification are shown in
Figure 1 and the default relaxable ranges are shown in Figure 2.

Query 1. List all the airports with the runway length greater than 7500 feet and runway
width greater than 100 feet. If there is no answer, relax the runway length condition first.
The following is the corresponding CoSQL query:

SELECT aport_name, runway_length_ft, runway width_ ft

FROM aports

WHERE runway_length_ft > 7500 AND runway_width f:- > 100
WITH RELAXATION-ORDER (runway_length_ft, runway_width_ft)

Based on the runway-length TAH and the relaxation order, the query is relaxed to:

SELECT aport_name, runway_length_ft, runway width_ft

FROM aports
WHERE runway_length_ft >= 4000 AND runway_width_ft > 100

If this query yields no answer, then we proceed to relax the range of runway width.

Query 2. Find all the airports with their geographical coordinates near Bizerte in the
country Tunisia. If there is no answer, the restriction on the country should not be relaxed.
The corresponding CoSQL query is as follows:

SELECT aport_name, latitude, longitude
FROM aports, GEOLOC
WHERE aport_name NEAR-TO ‘Bizerte’
AND country_state_name = ‘Tunisia’
AND GEOLOC.geo_code = aports.geo_code
WITH NOT-RELAXABLE country_state_name

Based on the TAH on airport location in Tunisia (Figure 1), the relaxed query is:

SELECT aport_name, latitude, longitude
FROM aports, GEOLOC
WHERE aport_name IN {‘'Bizerte’, ‘Djedeida’,
‘*Saminjah’, ‘Tunis’}
AND GEOLOC.geo_code = aports.geo_code

If the TAH for the airport location in Tunisia is not available, the system defaults to a
pre-defined range (Figure 2) which relaxes the search range by 100 miles from Bizerte.
Query 3. Find all airports in Tunisia similar to the Bizerte airport. Use the attributes
runway_length_ft, runway_width_ft as criteria for similarity. Place more similarity emphasis
on runway length than runway width; their corresponding weight assignments are 2 and 1,
respectively. The following is the CoSQL version of the query:
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Approximate Operator Relaxation Range

|| Relation Name | Attribute Name | ARange ||

runway_width_ft 10
parking_sq.ft 100000

aports
aports

Near-to Operator Relaxation Range

|| Relation Name | Attribute Name | Near-to Range | Near/Further I

|| aports | aportname | 100 miles |  s0% |

Figure 2. Relaxation Range for the Approximate and Near-to Operators.

SELECT aport_name
FROM aports, GEOLOC
WHERE aport_name SIMILAR-TO ‘Bizerte’
BASED-ON ((runway_length_ft 2.0)
(runway_width_£ft 1.0))
AND country_state_name = ‘TUNISIA’
AND GEOLOC.geo_code = aports.geo_code

To select the set of the airport names that have the runway length and runway width similar
to the Bizerte airport, we shall first find the values of the attributes: runway_length_ft and
runway_width_ft for the Bizarte airport,therefore transform the query to:

SELECT runway_length_ft, runway width_ft
FROM aports, GEOLOC ’
WHERE country_state_name_ ‘TUNISIA'
AND GEOLOC.geo_code = aports.geo_code
AND aport_name=‘Bizerte’

The system relaxes the values of the attributes: runway.length_ft and runway_width_ft
using an MTAH or TAHs until the size of the similarity set is satisfied by the pres-specified
answer set size. The system then computes the similarity of these airports to “Bizerte”
using the pre-specified nearness formula (e.g., weighted mean squared error). The order in
the similarity set is ranked according to the nearness meausre.

5. A Scalable and Extensible Architecture

Figure 3 shows an overview of the CoBase System. Type abstraction hierarchies and
relaxation ranges for the explicit operators are stored in a knowledge base (KB). There is a
TAH directory storing the characteristics of all the TAHs in the system. When CoBase asks
queries, it asks the underlying database systems (DBMS). When an approximate answer
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Figure 3. CoBase Functional Architecture.

is returned, the user can ask for an explanation of how the answer was derived or an
annotated relaxation path. A context-based semantic nearness will be provided to rank the
approximate answers (in order of nearness) against the specified query. A GUI displays
the query, results, TAHs, and explanations of the relaxation processes. Based on user type
and query context, associative information is derived from past query cases. A user can
construct TAHs from one or more attributes and modify the existing TAH in the KB.

5.1. Mediator Architecture

We use the concept of mediation (Wiederhold, 1992) to decompose our cooperative answer-
ing system into reusable and interacting components. A Mediator is a software module that
takes some input set of information, intelligently analyzes the information from a specific
viewpoint, and produces a set of conclusions based on its analysis. Often, a Mediator needs
additional information (knowledge and/or data) to perform its analysis. This information
can be required as inputs to the Mediator’s analysis, the Mediator can seek the assistance
of other Mediators in fulfilling its information needs. This latter mode (Mediators assisting
Mediators) is called dynamic matching. Specifically, a Mediator with an information need
will report this need to the environment and dynamically match with the Mediators that can
fulfill the need.

Our use of Mediators is to decompose the cooperative query answering capabilities,
where:

e Each mediator is composéd of (1) its mediation process; (2) its mediation capabilities
specifying what the mediator produces given a specific input set; and (3) its mediation
requirements specifying what information the mediator needs access during processing
(information that is not the postcondition input).
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Figure 4. A Scalable and Extensible Cooperative Information System

e One mediator’s requirements can match (or link to) another mediator’s capabilities — this
represents the linking mediator’s matching with the linked to mediator’s information

process.

e One or more Directory Mediators are needed to act as the information repository of
the mediator set. Specificaily, the directory mediator catalogs the mediators available
in the system by their capabilities and requirements. It can then be consulted to find a
mediator which meets a specific information need.

Figure 4 displays the various cooperative mediators: Relaxation, TAH, Association,
Explanation, Data Source, and Directory. These mediators are connected selectively to meet
applications’ needs. An application that requires relaxation and explanation capabilities,
for example, will entail a linking of Relaxation and Explanation mediators. Our mediator
architecture allows incremental growth with application. When the demand for certain
mediators increases, additional copies of the mediators can be added to reduce the loading,
thus the system is scalable. For example, there are multiple copies of relaxation mediator
and TAH mediator in Figure 4. Further, different types of mediators can be interconnect
together and communicate with each other via a common communication protocol (e.g.,
KQML) to perform a joint task. Thus, the architecture is extensible.

5.2. Relaxation Mediator

Figure 5 illustrates the functional components of the relaxation mediator, its capability,
and input requirements. Query relaxation is the process of understanding the semantic
context, intent of a user query and modifying the query constraints with the guidance
of the customized knowledge structure (TAH) into “near” values that provide “best-fit”
answers. The flow of the relaxation process is depicted in Figure 6. When a CoSQL
query is presented to the Relaxation Mediator, the system first go through a pre-processing
phase. During the pre-processing, the system first relaxes any context free and/or context
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Figure 6. Flow chart for Processing CoBase queries.

sensitive cooperative operators in the query. All relaxation control operations specified
in the query will be processed. The information will be stored in the relaxation manager
and ready to be used if the query requires relaxation. The modified SQL query is then
presented to the underlying database system for execution. If no answers are returned, then
the cooperative query system, under the direction of the Relaxation Manager, relaxes the
queries by query modification. This is accomplished by traversing along the TAH node
for performing generalization and specialization and rewriting the query to include a larger
search scope. The relaxed query is then executed, and if there is no answer, we repeat the
relaxation process until we obtain one or more approximate answers. If the system fails
to produce an answer due to over-trimmed TAHs, the relaxation manager will deactivate
certain relaxation rules to restore part of a trimmed TAH to broaden the search scope until
answers are found. Finally, the answers are post-processed (e.g., ranking, filtering, etc).
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5.2.1. Relaxation Control

Relaxation without control may generate more approximations than the user can handle.
The policy for relaxation control depends on many factors, including user profile, query
context, and relaxation control operators as defined in Section 4.1. The Relaxation Man-
ager combines those factors via certain policies (minimizing search time or nearness, for
example) to restrict the search for approximate answers. We allow the input query to be
annotated with control operators to help guide the mediator in query relaxation operations.

If control operators are used, the Relaxation Manager selects the condition to relax in
accordance with the requirements specified by the operators. For example, a “relaxation-
order” operator will dictate “relax location first, then runway length.” Without such user-
specified requirements, the Relaxation Manager uses a default relaxation strategy by select-
ing the relaxation order based on the minimum coverage rule. Coverage is defined as the
ratio of the cardinality of the set of instances covered by the entire TAH. Thus, coverage of
a TAH node is the percentage of all tuples in the TAH which are covered by the current TAH
node. The minimum coverage rule always relaxes the condition which causes the minimum
increase in the scope of the query, which is measured by the coverage of its TAH node.
This default relaxation strategy attempts to add the smallest number of tuples possible at
each step, based on the rationale that the smallest increase in scope is likely to generate the
close approximate answers. The strategy for choosing which condition to be relaxed first is
only one of many possible relaxation strategies; the Relaxation Manager can support other
different relaxation strategies as well.

Let us consider the following example of using control operators to improve the relaxation
process. Suppose a pilot is searching for an airport with an 8,000 feet runway in Bizerte but
there is no airport in Bizerte that meets the specifications. There are many ways to relax
the query in terms of location and runway length. If the pilot specifies the relaxation-order
to relax the location attribute first, then the query modification generalizes the location
‘Bizerte’ to ‘N'W _Tunisia’ (as shown in Figure 1) and specializes the locations ‘Bizerte’,
‘Djedeida’, *Tunis’, and ‘Saminjah’, thus broadening the search scope of the original query.
If, in addition, we know that the user is interested only in the airports in NW and SW Tunisia
and does not wish to shorten the required runway length, the system can eliminate the
search in East Tunisia and also avoid airports with short and medium runways, as shown in
Figure 7. As aresult, we can limit the query relaxation to a narrower scope by trimming the
type abstraction hierarchies, thus improving both the system performance and the answer

relevance.

5.2.2. Spatial Relaxation and Approximation

In geographical queries, spatial operators such as ‘located,’ ‘within,’ ‘contain,’ ‘inter-
sect, ‘union, and ‘difference’ are used. When there are no exact answers for a ge-
ographical query, both its“spatial and non-spatial conditions can be relaxed to obtain
the approximate answers. CoBase operators also can be used for describing approxi-
mate spatial relationships. For instance, “an aircraft-carrier is near seaport Sfax.” Ap-
proximate spatial operators, such as ‘near-to’ and ‘between’ are developed for the ap-
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Figure 7. TAH trimming based on relaxation control operator.

proximate spatial relationships. Spatial approximation depends on contexts and domains
(Mark and Frank, 1989, Subramanian and Adam, 1993). For example, a hospital near to
LAX is different from an airport near to LAX. Likewise, the nearness of a hospital in a
metropolitan area is different from the one in a rural area. Thus spatial conditions should
be relaxed differently in different circumstances. A common approach to this problem is
the use of pre-specified ranges. This approach requires experts to provide such information
for all possible situations, which is difficult to scale up to larger applications or to extend
to different domains. Since TAHs are user and context sensitive, they can be used to pro-
vide context-sensitive approximation. More specifically, we can generate TAHs based on
multi-dimensional spatial attributes (MTAH:s).

Further, MTAH (based on latitude and longitude) is generated based on the distribution
of the object locations. The distance between nearby objects is context-sensitive: the
denser the location distribution, the smaller the distance among the objects. In Figure 8,
for example, the default neighborhood distance in Area 3 is smaller than the one in Area
1. Thus, when a set of airports are clustered based on their locations, the ones in the
same cluster of the MTAH are much closer to each other than to those outside the cluster.
Thus, they can be considered ‘near-to’ each other. We can apply the same approach to
other approximate spatial operators, such as ‘between’ (i.e., a cluster ‘near-to’ the center
of two objects). MTAHs also can be used to provide context-sensitive query relaxation.
For example, consider the query: “Find an airfield at the city Sousse.” Since there is no
airfield located exactly at Sousse, this query therefore can be relaxed to obtain approximate
answers. First, we locate the city Sousse with latitude 35.83 and longitude 10.63. Using
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Figure 8. An MTAH for the airports in Tunisia and its corresponding two-dimensional space.

the MTAH in Figure 8, we find Sousse is covered by Area 4. Thus, the airport Monastir
is returned. Unfortunately, it is not an airfield. So the query is further relaxed to the
neighboring cluster-the four airports in Area 3 are returned: Bizerte, Djedeida, Tunis, and
Saminjah. Since only Djedeida and Saminjah are airfields, these two will be returned as
the approximate answers.

MTAHs are automatically generated from databases by using our clustering method that
minimizes relaxation error (Chu and Chiang, 1994). They can be constructed for different
contexts and user type. For example, it is critical to distinguish a friendly airport from an
enemy airport. The use of a MTAH for friendly airports restricts the relaxation only within
the set of friendly airports, even though some enemy airports are geographically nearby. This
restriction significantly improves the accuracy and flexibility of spatial query answering.
The integration of spatial and cooperative operators provides more expressiveness and
context-sensitive answers. For example, the user is able to pose such queries as, “find
the airports similar-to LAX and near-to City X.” When there are no answers available,
both ‘near-to’ and ‘similar-to’ can be relaxed based on the user’s preference (i.e., a set of
attributes). To relax ‘near-to’, airports from neighboring clusters in the MTAH are returned.
To relax ‘similar-to’ the multiple-attribute criteria are relaxed by their respective TAHs.

Cooperativeness in geographic databases was studied in (Hemerly et al., 1993). A rule-
based approach is used in their system for approximate spatial operators as well as query
relaxation. For example, they define that: “P is near to Q iff the distance from P to Q is
less than n*length_unit, where length_unit is a context dependent scalar parameter, and n is
a scalar parameter that can be either unique for the application and thus defined in domain
model, or specific for each class of users and therefore defined in the user models.” This
approach requires n and length_unit be set by domain experts. Thus, it is difficult to scale
up. Our system uses MTAHs as a representation of the domain knowledge. The MTAHs
can be generated automatically from databases based on contexts and provide a structured
and context-sensitive way to relax queries. As aresult, it is scalable to large applications.
Further, the relaxation error at each node is computed during the construction of TAHs and
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MTAHSs. It can be used to evaluate the quality of relaxations and to rank the nearness of
the approximate answers to the exact answer.

5.3. TAH Mediator

The CoBase TAH Mediator (Figure 9) provides three conceptually separate, yet interlinked,
functions to peer mediators. These are the TAH Directory, the TAH Management, and the
TAH Editing facilities.

Usually, a system contains a large number of TAHs. In order to allow other mediators to
determine which TAHs exist within the system and the characteristics of those TAHs, the
TAH Mediator contains an intelligent directory. This directory serves to link the charac-
teristics, context, and user type with the TAHs themselves. This directory is searchable by
characteristics, user type, context, name, or any combination thereof, enabling peer media-
tors to locate TAHs even if they have only a partial picture of the TAH they desire. Further,
the TAH directory is capable of approximate matching, so if the exact TAH a client desires
is unavailable in the system, the TAH Directory lists those TAHs which may be useful.

The TAH Management facility provides client mediators with TAH traversal functions
(e.g. specialization and generalization), data extraction functions (for reading the informa-
tion out of TAH nodes), and formatting functions (to eliminate the need for peer mediators
to understand the varied internal formats of different types of TAHs). These capabilities
present a common interface, so that peer mediators can traverse and extract data from a
TAH without knowing about the particular type or structure of the TAHs they are using.

The TAH Mediator supports a TAH editor which allows users to edit TAHs to suit their
specific needs. The editor provides the following editing operations. '

o Delete: to improve search efficiency, irrelevant parts of a hierarchy for a given appli-
cation should be deleted.-

e Move: if a TAH is improperly formed for its application, then a domain expert can
adjust it by moving sub-hierarchies and attaching them to the appropriate places.
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e Add: if a TAH does not provide enough details for the particular application, then
additional information can be added to the hierarchy.

The TAH editor handles recalculation of all information contained within TAH nodes (e.g.
the coverage and relaxation error) during the editing process and supports exportation and
importation of entire TAHs if a peer mediator wishes to modify a TAH itself.

5.4. Association Mediator

Often it is desirable to provide additional information relevant to, though not explicitly
stated in, a user’s query. For example, in finding the location of an airport satisfying the
runway length and width specifications, an association mediator (Figure 10) can provide
additional information about the runway quality and weather condition so that this additional
information may help the pilot select a suitable airport to land his aircraft. Thus, association
needs to identify the dependencies and relationships between data distributed in multiple
classes or even multiple databases. Since objects have different relationships in different
problem domains, it is necessary to focus on the localized contexts in which the objects
participate. Domain knowledge is then used to interpret the relationships between these
objects. As an object can have multiple super-types, there exist different views of type
abstraction for different problem contexts. Therefore, TAHs express relationships at the
context level.

Association in CoBase is executed as a multi-step post-process. After the query is ex-
ecuted, the answer set is gathered with the query conditions, user profile, and application
constraints. This combined information is matched against query cases from the case base
to identify relevant associative information (Fouque et al., 1994). The query cases can take
the form of a CoBase query which can include any CoBase construct, such as conceptual
conditions (e.g., runway length_ft = short) or explicitly cooperative operations (city near-to
‘Bizerte’). -

48




Query Answer Associative Information
name runway length | runway_condition  weather
Jerba 9500 Damaged Sunny

Monastir 6500 Good Foggy
Tunis 8500 Good Good

Figure 11. Query Answer and Associative Information for the Selected Airports.

For example, consider the query

SELECT name, runway_length_ft
FROM airports
WHERE runway_length_ft > 6000

Based on the combined information, associative attributes such as ‘runway conditions’ and
‘weather’ are derived. The associated information for the corresponding airports is retrieved
from the database and then appended to the query answer, as shown in Figure 11. Since
association can be transitive, we use Case Based Reasoning that based on past queries, user
profile, and query context to terminate the association.

A Case Memory (see Figure 12) consists of cases and association links. Cases are past
user queries (e.g., @1, @2, @3, or Q4). An association link (e.g., l1) is established by the
attributes shared by the two cases (e.g., @1 and Q2), and the corresponding weight (e.g.,
wy) represents the usefulness of the association between the two cases. When a user query,
Quser» is executed, its conditions, user type, and query context are compared against the
Case Memory for similar cases (e.g., @ and Q2 are similar to Quser). Based on the set
of similar cases, a set of association subjects (@4 and Q3) can be selected through the
traversal of association links (l2, I3, l4). The usefulness of an association is computed
from the similarity measure of the corresponding cases and the weights of the traversed
association links. The cases with the high usefulness values (e.g., Q3 and Q4) are adapted
into the user query (Q3 and Q) as associations to the user. Initially, the Case Memory
has not acquired any experience. User feedback on the usefulness of the associations is
incrementally integrated into the Case Memory by adjusting the weights of the traversed
association links. In this way, the Case Memory can accumulate experience from the user
feedback.

Our current Case Base, consisting of about 1500 past queries, serves as the knowledge
server for the association module. The size of the Case Base is around 2MB. For association
purposes, we use the 300-case set which is composed of past queries used in the transporta-
tion domain. For testing performance and scalability of the system, we use a 1500-case set
which consists of randomly generated queries based on user profile and query template over
the transportation domain. Users can also browse and edit association control parameters
such as the number of association subjects, associated links and weights of a given case,
the threshold for association relevance, efc.
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5.5. Explanation Mediator

Query relaxation and association involve inference over vast data and knowledge sources.
If users are to trust derived answers, it is vital to provide explanations of these processes. To
not overwhelm the user, explanations should initially be summary. If users require further

_description, definition, or justification, they should be able to interactively obtain such
explanations. Based on the user and context, explanations should occur at appropriate times
during processing. One extreme is the system running automatically, only summarizing its
work once it has completed. Another extreme is the system running in detail, explaining
each action, giving the user the ability to monitor progress. Explanations should also be
tailored to a user’s understanding of the system. We have developed an explanation mediator
(Minock and Chu, 1996) to serve these purposes.

The explanation mediator is capable of providing interactive, user-sensitive, and context-
dependent explanations of CoBase cooperative operations. A client sends the explanation
mediator a simple explanation request and receives back an explanation consisting of natural
language and recommended visualizations. The client presents the explanation on their
GUI and a simple protocol enables the user to interact with this initial explanation, causing
the explanation mediator to generate follow up explanations. The explanation mediator
requires access to queries, TAHs, execution traces, and answers (see Figure 13). CoBase
mediators make this information available to the explanation mediator and the explanation
mediator maintains a model of query processing, consisting of concepts and classification
rules, by which it interprets such information. This approach is similar to the Explanation
Explainable Expert System (EES) (Swartout et al., 1991) framework, though its model of
query processing is built spetifically to interpret CoBase operations, and work is focused on
providing explanations any time during system execution. In addition, the representation,
classification and generation formalism cover the complete explanation generation task,
easing integration maintenance and extension.
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The explanation mediator represents information such as queries, execution traces, TAHs,
and answers in arepresentation similar to a semantic network. The particular representation,
a directed hyper-graph, offers several advantages over standard semantic networks for
explanation. Most importantly our hyper-graph allows for abstraction on the label linking
nodes (instances, values, or concepts), enabling specific to generic access of the graph.
The hyper-graph also enables the direct expression of one-to-many and many-to-many type
relationships. Concepts in this graph (e.g. Query, Relax-Query-Action, TAH-node, etc.)
include those of the query processing model. As the relaxation and association mediators
execute, they send a stream of information that is instantiated in this graph. Classification
rules in the query processing model interpret and augment this information as it added to
the graph. In addition, the graph contains a user and context-model, enabling the generation
of user-sensitive, context-dependent explanations.

The explanation mediator accepts an explanation request on a node (or set of nodes) in the
graph and produces an explanation tree. This tree is created via the depth-first application
of generation rules toward solving the initial explanation request. The explanation request
is at the root of the explanation tree, while the text and recommended visualizations of the
explanation are leaves in the tree. Intermediate nodes are the subgoals that were carried
out to achieve the root explanation request. Generation rules consist of a goal, a set of
constraints, and a set of actions. If the explanation request (or an intermediate subgoal)
is matched by a generation rule goal, and if all of the rule’s constraints are met, then the
rule’s actions are performed. These actions may either be subgoals that are in turn solved
by application of generation rules or may be primitive communication actions (e.g. text or
a visualization call).

A single inference mechanism applies classification and all levels of generation rules.
Classification rules interpret CoBase information as instances of query processing concepts.
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Generation rules expand explanation requests and intermediate nodes during the generation
of an explanation tree. There are five types of generation rules: invocation, communication,
rhetorical, syntactic and lexical. Invocation rules determine what should be explained under
various user models and contexts. Communication rules determine what information will
be expressed. Rhetorical rules determine the manners in which information is expressed.
Syntactic rules constrain text to valid English. Lexical rules determine the names that will be
given to CoBase actions and objects. Invocation and communication rules are typically the
rules that match explanation requests while rhetorical, syntactic, and lexical rule typically
expand intermediate nodes and produce primitive communication actions.

Different users require different types of explanation under different contexts. This is
accounted for by the fact that more than one generation rule may match to expand a node in
the explanation tree. Alternate generation rules vary in which aspects of CoBase’s process
or results should be expressed and to what depth. Heuristics control how an explanation is
generated by controlling which rule among the matching rules will fire to expand a goal.
Note that these heuristics apply only to generation rules which determine when and how
to express information . The interpretation of the relaxation and association processes is
non-heuristic.

The quality of explanations (with respect to completeness, correctness, and precision)
depends on access to CoBase queries, execution traces, TAHs, and answers, and also on the
effort expended in populating and refining the explanation rule-base. Elapsed times depend
on access cost to such information and the computational complexity of synthesizing the
explanation tree. The dominant cost is the synthesis of explanation trees, particularly
the cost of matching generation rules to expand nodes. A RETE (Forgy, 1982) pattern-
matcher performs these matches. Performance scales as the logarithm of the number of
generation rules. The explanation mediator is implemented in C++ and CLIPS. There
are approximately 60 concepts and 20 classification rules in the query processing model.
There are approximately 80 general generation rules for explanation of CoBase cooperative
operations. In two CoBase application domains, electronic warfare and transportation
planning, we have extended these general generation rules to create 40 specific generation
rules for the electronic warfare domain and 30 rules for the transportation planning domain.
These domain specific generation rules were based on simple revisions of the general
generation rules. The explanation mediator can usually produce explanations in under a
second on a Sun SPARC 10 workstation.

Current work is focused on providing a method by which system administrators and users
may interactively refine and extend explanations. Currently, programmers must write new
generation rules. Instead, administrators, through a sequence of editing operations, should
be capable of extending initially general CoBase explanations into precise, domain specific
forms. By doing so, the extended generation rule-base is populated with domain specific
rules. Through feedback and interaction, users should be able to refine explanations by
altering the heuristic knowledge that determines which rules are selected.

5.6. Data Source Mediator

The Data Source Mediator (DSM) provides two services (Figure 14):
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1. Virtual Database Interface. Different data sources usually have different schema. To
extend CoBase to different data sources, a virtual database interface is developed.
The virtual database interface represents a data source as a list of tables (each table
consists of a list of attributes). DSM extracts schema information from a specific data
source and builds the virtual database interface. As a result, data schema and data
can be accessed from data sources without the need of knowing the differences of the
underlying data sources. The Query and Schema Translation module converts a virtual
database information request into a specific request supported by one of its underlying
data sources.

2. Query Conversion. Different data sources may also use different query languages.
When a query is processed in CoBase, it uses an internal representation called query
object. To pose a processed query to a specific data source, DSM must convert query
objects into the specific query language for the target data source (e.g., SQL).

In DSM, each data source has a database interface to handle the specific requirements.
Currently, we have database interfaces for Oracle (a relational database), RDB (a UNIX-
based text database), and Objectivity (an object-oriented database). New data sources can
be incorporated by adding a new interface module to the DSM, which does not affect the
rest of the system. Thus, DSM makes CoBase scalable and extensible to different types of
data sources.

5.7. Inter-Mediator Communications

Since CoBase mediators are independent processes possibly running on different comput-
ers, a communication language is needed to facilitate information exchange and service
request among these mediators. Each CoBase mediator (Figure 15) consists of a CoBase
module (e.g., A or B), the CoBase Ontology Layer (for message interpretation), the CoBase
Content Language Layer (for message representation), and the KQML Layer (for message
transportation): ' -

1. A CoBase module performs a specific cooperative service, such as relaxation, associa-
tion, explanation, or TAH management. Each module has a set of APIs and represents
its information in C++ objects. The service of a module is invoked through its APIs.

53



Mediator A Mediator B

Module A APls Objects Module B
CoBase Ontology I t CoBase Ontology
CoBase Content Language | Actions Data CoBase Content Language
KQML KQML

Figure 15. Flow of mediator communications.

Since CoBase mediators are running in separated process spaces, an API call must be
transported to the module supporting it. When APIs or objects are represented in a
transportable format, they are called CoBase messages.

2. A CoBase Ontology (CO) provides basic vocabulary to compose CoBase messages
for mediator communications. In a CoBase message, an API call is represented as an
action and an object is represented as a data. For example, an API call for relaxing a

given condition:

(generalize_condition TAH_NODE *tah_node)

is represented in CoBase Content language as
(generalize_condition *TAH_NODE_REFERENCE")

CO functions as a dictionary for the translation between APIs/objects and actions/data.

3. A CoBase Content Language (CCL) is used to represent CoBase messages in a struc-
tured form so that they can be interpreted and understood among different mediators.
CoBase mediators require interactive communication capabilities. For example, an
explanation returned by the explanation mediator contains some actions for further
interaction. A user can select on certain phrases of the explanation to require the ex-
planation mediator for further clarification, elaboration, or justification. Thus, data
exchanged among CoBase mediators not only contain necessary information for the
completion of an action, but also have embedded actions for further interaction. CCL

is designed to support such capability.

4. The Knowledge and Query Manipulation Language (KQML) (Finin et al., 1993) serves
as envelopes to pass CoBase messages among the CoBase mediators across the network.

Among the three components of the Communication Language, the Ontology (i.e., CO) is
developed based on CoBase modules and their APIs, while the content language (i.e., CCL)
and the transport language (i.e., KQML) are CoBase-independent.

The flow of CoBase mediator communication is illustrated in Figure 15. The communi-
cation starts with a request for action from a mediator (e.g., A). The request (i.e., an API
call) and its parameters (i.e., C++ objects) are translated into action and data in CCL by
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CO, wrapped inside a KQML message, and passed to a designated mediator (e.g., B). After
the message is received, it is unwrapped at the KQML Layer and translated back to an API
call by CO. The call is performed by B and an answer is retuned. The answer (in C++
object format) is translated into CCL and sent back to A, in the same manner as as it does
from A to B.

The following example describes the use of CoBase messages for communication between
the Relaxation Mediator (RM) and the TAH Manager (TM). TM provides TAH traversing
operations such as generalization and specification. When RM needs to relax a condition
via a TAH node with identifier “TAH.NODE_ID_113", it sends a request (i.e., an API call) to
T™: '

(generalize_condition TAH_NODE_ID_113)

This call is translated into a CCL action:

(generalize_condition °*TAH_NODE_ID_113")

This message is wrapped inside a KQML performative and passed to TM:

(achieve :language CoBaseContentLanguage
:ontology CoBaseOntology
:reply-with m_17
:sender RelaxationMediator
:receiver TahManager
:content (generalize_condition "TAH_NODE_ID_113"))

TM returns relaxed conditions to RM:

"’BIZERTE’ ‘TUNIS’ 'DJEDEIDA’"

Another example to iflustrate the communication between RM and the Explanation Media-
tor (EM): a user requires the description of arelaxation process identified by *relaxQueryActio
01-~.

{explain "relaxQueryAction-01" "describe")

EM returns an explanation to RM: “The query retrieving airport name where runway
length is greater than 2000 feet, ... after relaxation location name Bizerte relaxed to
location names Tunis, Djedeida, ...” (phrases in bold can be selected on for further
explanation). The corresponding CCL is:

(DATA Explanation
(*The query* :action (explain "node-ref-1%)
*retrieving”
*airport name" :action (explain "node-ref-2")
*where* -
*runway length* :action (explain *node-ref-3")
*is greater than 2000 feet"

..)



“node-ref-1." “node-ref-2,” and “node-ref-3" are node identifiers in the explanation
graph generated by EM for “relaxQueryAction-01." Whenauser selects a phrase which
has a predefined action (e.g., The query, airport name), the selected action is sent back to
EM to perform the action and returns more explanation on the phrase (i.e., The query, or
airport name).

6. Implementation
6.1. Object-Oriented Implementation

We employ the object-oriented paradigm to implement CoBase. In this implementation,
queries, database schema/interface, cooperative operators, and TAHs are represented as
objects. Because of polymorphism and encapsulation, differences among various specific
query languages, databases, cooperative functions, or types of TAHs are hidden abstract
objects. Thus, query relaxation and other cooperative modules can be built upon these
abstract objects with little knowledge about the implementation of the specific objects. For
example, we have different objects for different databases including relational databases
(e.g., Oracle or SyBase object) and object-oriented databases (e.., Objectivity object).
Each provides its own interface for database access. But CoBase modules only see a
database object (i.e., a virtual database interface) which is an abstract interface to access
any databases. This implementation enables these modules to work easily with different
databases. Moreover, the object-oriented approach provides easy enhancements to CoBase.
Adding a new cooperative function, for instance, simply entails defining a new cooperative
operator object. The modification effects are localized and minimized through abstraction.
Further, inheritance allows code sharing and reusing, thus reducing the development and
maintenance effort. For example, functions common to all databases can be implemented
in the abstract database object and inherited by all specific database objects. In this object-
oriented paradigm, CoBase consists of multiple reusable modules. These modules are built
on top of abstract objects. Thus, they can be easily ported to other systems by building
host-compliant objects.

6.2. Graphical User Interfaces

CoBase’s control mechanisms include graphical user interfaces for the Relaxation Mediator,
Associative Mediator, and the Explanation Mediator. The GUI for the relaxation was
implemented in C++ and X/MOTTF. It enables users to browse the database, visualize the
query relaxation process, and view the answers. Further, a map server was integrated into
CoBase. It allows a user to pose queries based on geographic objects such as countries,
states, cities, airports, rivers, efc. An important feature of these objects is that they can
be spatially related via ‘located,” ‘within,’ ‘contain,” ‘intersect,’ ‘union,’ and ‘difference.’
These spatial operators can be used in our system to specify spatial conditions in spatial
queries. For example, a query such as, “find all the airports in the region specified on the
map” retrieves the airports in the user-specified region and displays the airport objects on the
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Figure 16. Find all the airports in a user-specified area.

map, as shown in Figure 16. More importantly, it allows a user to ask complex queries by
the simple ‘point-and-click’ method. The GUI for the explanation supports a hypertext-like
browser for explanation. It allows users to interactively ask for more definition, elaboration,
Justification, or simply summarization.

7. Performance Evaluation

Inthis section, we present the CoBase performance based on measuring the execution of a set
of queries on the CoBase testbed developed at UCLA for the ARPI transportation domain.
The performance measure includes response time for query relaxation, association, and
explanation, and the quality of answers. The response time depends on the type of queries
(e.g., size of joins, number of joins) as well as the amount of relaxation, association,
and explanation required to produce an answer. The quality of the answer depends on the
amount of relaxation and association involved. The user is able to specify the relaxation and
association control to reduce the response time and also to specify the requirement of answer
accuracy. In the following, we shall show four example queries and their performances. The
first query illustrates the relaxation cost. The second query shows the additional explanation
cost, while the third query shows the additional association cost. The fourth query shows
the processing cost for returned query answers as well as the quality of answers by using
TAH vs MTAH for a very large database table (about 200,000 tuples).

Query 1: Find nearby airports can land C-5.

Based on the airplane location, the relaxation mediator translates ‘nearby’ toa pre-specified
or user-specified latitude and longitude range. Based on the domain knowledge of C-5,
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the mediator also translates ‘land’ into required runway length and width for landing the
aircraft. The system executes the translated query. If no airport is found, the system relaxes
the distance (by a predefined amount) until an answer is returned. In the above query, an
airport is found after one relaxation. Thus, two database retrievals (i.e., one for the original
query, one for the relaxed query) are performed. Three tables are involved: Table GEOLOC
(50,000 tuples), table RUNWAYS (10 tuples), table AIRCRAFT_AIRFIELD_CHARS (29
tuples). The query answers provide airport locations and their characteristics.

Elapsed time: 5 seconds processing time for relaxation
40 seconds database retrieval time

Query 2: Find at least 3 airports similar-to Bizerte based on runway-length and runway-
width.

The relaxation mediator retrieves runway characteristics of Bizerte airport and translates the
similar-to condition into the corresponding query conditions (runway length and runway
width). The system executes the translated query, and relaxes the runway length and runway
width according to the TAHs until at least 3 answers are returned. Noted the TAH used for
this query is a Runway-TAH based on runway-length and runway-width, which is different
from the Location-TAH based on latitude and longitude (shown in Figure 8). The nearness
measure is calculated based on weighted mean square error. The system computes similarity
measure for each answer obtained, ranks the list of answers, and presents it to the user. The
system obtains five answers after two relaxations. The best three are selected and presented
to the user. Two tables are involved: table GEOLOC (50000 tuples), table RUNWAYS (10

tuples).

Elapsed time: 2 seconds processing time for relaxation
10 seconds database retrieval time

The eXplanation mediator generates the following description of the SQL query:

The query retrieves airport name, runway length, and runway width where answers
are similar to the runway length and runway width of the airport name Bizerte. A
minimum of three answers are required.

Elapsed time: 5 seconds processing time for explanation

The explanation mediator generates the following description of relaxation process:
Query relaxed: airport name Bizerte relaxed to Bizerte and El Borma.

Elapsed time: 2 seconds processing time for explanation

Query relaxed: airport name Bizerte and El Borma relaxed to airport name Bizerte,
Djedeida, El Borma, Gabes and Gafsa.

Elapsed time: 2 seconds processing time for explanation

Further, the explanation provides the following summarization:
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airport name Bizerte relaxed to Gafsa, Gabes, El Borma, Djedeida and Bizerte
vielding 5 answers. These answers are ranked by similarity to the runway length
and runway width of the airport name Bizerte based on weighted mean square error
measure.

Elapsed time: 2 seconds processing time for explanation

Query 3: Find seaports in Tunisia with a refrigerated storage capacity of over 50 tons.
The relaxation mediator executes the query. The query is not relaxed, so one database
retrieval is performed. Two tables are used: table SEAPORTS has 11 tuples; table GEOLOC
has about 50000 tuples.

Elapsed time: 2 seconds processing time for relaxation
S seconds database retrieval time

The association mediator returns relevant information about the seaports. It compares the
user query to previous similar cases and selects a set of attributes relevant to the query.
Two top associated attributes are selected and appended to the query. CoBase executes the
appended query and returns the answers to the user, together with the additional information.
The two additional attributes associated are location name and availability of railroad facility
near the seaports.

Elapsed time: 10 seconds for association computation time

Query 4: Find at least 100 cargos of code ‘3FKAK’ with the given volume (length, width,
height), code is non-relaxable.

The relaxation mediator executes the query, and relaxes the height, width, and length
according to MTAH, until at least 100 answers are returned. The query is relaxed four
times. Thus, five database retrievals are performed. Among the tables accessed, Table
CARGO_DETAILS has 200,000 tuples, a very large table.

Elapsed time: 3 seconds processing time for relaxation using MTAH
2 minutes database retrieval time for 5 retrievals.

By using single TAHs (i.e., single TAHs for height, width, and length respectively), the
query is relaxed 12 times. Thus 13 database retrievals are performed.

Elapsed time: 4 seconds for relaxation by single TAHs
5 minutes database retrieval time for 13 retrievals

For queries involving multiple attributes in the same relation, using an MTAH that covers
multiple attributes would provide better relaxation control than using a combination of
single-attribute TAHs. The MTAH compares favorably with multiple single-attribute TAHs
in both quality and efficiency: We have shown that an MTAH yields a better relaxation
strategy than multiple single-attribute TAHs. The primary reason is that MTAHs capture
attribute-dependent relationships which cannot be captured when using multiple single-
attribute TAHs.
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Using MTAH:s to control relaxation is more efficient than using multiple single-attribute
TAHs. For the above example, relaxation using MTAHs require an average of 2.5 relaxation
steps, while single-attribute TAHs require 8.4 steps. Since a database query is posed after
each relaxation step, using MTAHs saves around 6 database accesses on average. Depending
on the size of tables and joins involved, each database access may take from 1 second to
about 30 seconds. As aresult, using MTAHs to control relaxation saves a significant amount
of user time.

With the aid of domain experts, the above queries can be answered by conventional
databases. Such an approach takes a few minutes to a few hours. However, without the aid of
the domain experts, it may take hours to days to answer these queries. CoBase incorporates
domain knowledge as well as relaxation techniques. Thus, it is able to automatically search
for the answer with significantly less time.

8. Technology Transfer of CoBase

CoBase stemmed from the transportation planning application for relaxing query condi-
tions. CoBase has been linked with SIMS (Arens and Knoblock, 1992) and LIM (McKay
et al., 1992) as a knowledge server for the planning system. SIMS performs query opti-
mizations for distributed databases, and LIM provides high level language query input to
the database. A Technical Integration Experiment (TIE) has been performed to demonstrate
the feasibility of this integrated approach. CoBase technology is being implemented for
the ARPI transportation and logistic planning applications. In addition, CoBase has also
been successfully applied to the following domains.

In electronic warfare, one of the key problems is to identify and locate the emitter for
radiated electro-magnetic energy based on the operating parameters of observed signals.
The signal parameters are radio frequency, pulse repetition frequency, pulse duration, scan
period, etc. In a noisy environment, these parameters often cannot be matched exactly
within the emitter specifications. CoBase can be used to provide approximate matching
of these emitter signals. A knowledge base (TAH) can be constructed from the parameter
values of previously identified signals and also from the peak (typical, unique) parameter
values. The TAH provides guidance on the parameter relaxation. The matched emitters
from relaxation can be ranked according to relaxation errors. Our preliminary results
have shown that CoBase can significantly improve emitter identification as compared to
conventional database techniques, particularly in a noisy environment. From the line of
bearing of the emitter signal, CoBase can locate the platform that generates the emitter
signal by using the “near-to” relaxation operator.

In medical databases that store X-rays and MR images, the images are evolution and
temporal-based. Further, these images need to be retrieved by object features or contents
rather than patient ID (Chu et al., 1994). The queries asked are often conceptual and not
precisely defined. We need to use knowledge about the application (e.g., age class, ethnic
class, disease class, bone age etc.), user profile and query context to derive such queries
(Chu et al., 1995). Further, to match the feature exactly is very difficult if not impossi-
ble. For example, if the query, “Find the treatment methods used for tumors similar to
Xi(location,, sizez,) on 12-year-old Korean males,” cannot be answered, then based on
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Figure 17. Type Abstraction Hierarchies for the Medical Query Example.

the TAH shown in Figure 17, we can relax “tumor X;” to tumor “Class X,” and “12-year-old
Korean male” to “pre-teen Asian,” which results in the following relaxed query: “Find the
treatment methods used for tumor “Class X on pre-teen Asians.” Further, we can obtain
such relevant information as the success rate, side effects, and cost of the treatment from
the association operations. As a result, query relaxation and modification are essential to
process these queries. We have applied CoBase technology to medical imaging databases
(Huang and Taira, 1992). TAHs are generated automatically based on context-specific (e.g.,
brain tumor) image features (e.g., location, size, shape, etc). Once the TAHs for the medical
image features have been constructed, query relaxation and modification can be carried out
on the medical features.

The use of CoSQL constructs such as ‘similar-to,’ ‘near-to,” and ‘within’ can be used
in combination, thus greatly increasing the expressibility for relaxation. For example, we
can express “find tumors similarto the tumor x based-on (shape, size, lo-
cation) and nearto object O within a specific range (e.g., angle of cov-
erage) .” The relaxation control operators, such as matching tumor features in accordance
to their importance, can be specified by relaxation-order (location, size, shape)
to improve the relaxation quality.

9. Conclusions

We have presented a structured approach that uses Type Abstraction Hierarchy for provid-
ing query modification. TAHs provide multi-level knowledge representation and can be
generated automatically from data sources. Further, TAHs are user and context sensitive,
and easy to customize and maintain. Thus, TAHs are scalable to large systems. We have
also extended the SQL to CoSQL. This extended language provides cooperative operators
that allow the user to explicitly specify relaxation operations and controls. These operators
are very general and can be applied to different domains. Combination of these operators
in a query can greatly improve the expressive power. Based on user profile and application
contexts, the relaxation mandger limits the search scope and also filters out the unsuitable
answers. To provide relevant information to the query answers, a pattern-based framework
is used for deriving associative (relevant) information from past cases. An explanation facil-
ity is included which summarizes the query modifications and relaxation process, and also
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provides the nearness of the approximate answer to the exact answer. Further, a coopera-
tive geographic information system has been developed to provide information retrieval and
analysis based on geographic objects (e.g., countries, cities, airports) and spatial relations
(e.g., ‘located, ‘within, ‘between,” ‘near-to,’ ‘closest’), and to perform context-sensitive
relaxation of geographic relations. CoBase is implemented in a mediator-based architecture
which is scalable and extensible.

Performance measurements on our testbed reveal that the cost for relaxation, explanation,
and association is fairly small. The major cost is due to database retrieval which depends
on the number of relaxations required before obtaining a satisfactory answer. For queries
with multiple dependent attributes, the use of MTAH can reduce the number of relaxations,
thus decreasing the overall cost.

CoBase stemmed from the ARPA/Rome Lab Planning Initiative for providing approxi-
mate query answers from a large and heterogeneous database. It has also been applied in
a medical imaging database (X-ray, MRI) for approximate matching of image features and
contents, and in electronic warfare for approximate matching of emitter signals (based on
a set of parameter values) and also for locating the platforms that generate the signals via

spatial relaxation.
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Notes

1. The definition of abstraction allows successive single-value abstractions, which does not provide real abstrac-
tion, therefore in implementation, they are collapsed into a single abstraction.
2. The goodness is defined by the intra-class similarity and inter-class dissimilarity.

3. A cutcis a value that separates a cluster of numbers {z]a < z < b} into two sub-clusters {z[a < z < ¢}
and {z]c < z < b}.

4. Dependency here means that all the attributes as a whole define a coherent concept. For example, the length and
width of a rectangle are said to be “semantically” dependent. This kind of dependency should be distinguished
from the functional dependency in database theory.
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Abstract

Associative query answering provides additional rel-
evant information to the gqueries that is not explicitly
asked, but is of interest to the user. For a given query,
associative information may be derived from past user
query cases based on the user type and the query con-
tezt. A case-based reasoning approach that matches
query features is proposed. Query feature consists of
the query topic, the output attribute list, and the selec-
tion constraints. The similarity of the query feature is
defined and can be evaluated from the semantic model
that is derived from the database schema. Query fea-
ture based associative attribute search is presented.

1 Introduction

Associative query answering (1, 2, 3] is to provide
users with additional relevant information to the query
that the user did not ask or does not know how to ask,
and may be of interest to the users. For a given query,
the associative information depends on the user’s in-
tention, interests, and query context. For example, for
the query: “List airports in Tunisia that can land a
C-5 cargo plane,” the relevant information for a trans-
portation planner may include the railway facility at
the airports. But for a pilot, the interested information
may be the runway condition and weather condition.

Attribute based association from case base has been
used [3). However, the derived associative information
often is not domain and user specific. To remedy such
shortcoming, we propose to use query feature that in-
cludes query topic as additional information to provide
relevant information. As a result, the proposed ap-
proach yields more relevant information than that of
the attribute based search approach [3], which is only
based on the query output attribute list and selection
conditions. Further, the domain knowledge from a se-
mantic model is used to evaluate query feature simi-
larity to improve the efficiency in searching associative
information from case bases.

The paper is organized as follows. In section 2,
we discuss our approach and present an overview of

*This research is supported in part by DARPA contracts No.
F30602-94-C-0207 and No. N66001-97-C-8601.
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the associative query answering system. In section 3
we describe a semantic model based on the database
schema used for topic identification and query similar-
ity evaluation. Then in section 4 query feature and
query similarity are discussed. The search and learn-
ing process is described in section 5.

2 Associative query answering systems
2.1 Approach
Due to the unlimited number of user queries possi-

ble for a relational database, it will be very costly to

derive associative information by knowledge engineers
[4]. Therefore, a case-based reasoning approach [3] is
used to capture the domain and user-specific informa-
tion for associative query answering.

Given a set of past queries, searching for associative
attributes can be based on the frequencies of attribute
groups that appeared in the queries. However, such
approach does not provide context of co-occurrent at-
tributes. Therefore we propose to use the information
in the database schema and the query to analyze the
user intention to guide query association.

For an SQL query, three types of associative at-
tributes and expressions are identified: 1) simple asso-
ciative atiributes: attributes of relations in the current
query; 2) eztended associative attributes: attributes of
relations introduced into the query by joins with the
existing relations; and 3) statistical associative infor-
mation: aggregate functions, e.g. count and sum, that
are related to the main entity in the query. In this
paper, we only focus on the first two types.

2.2 System overview

The associative query answering process is illus-
trated in Fig. 1. A semantic model is constructed
from the database schema and domain knowledge.
Each user can derive his own domain-specific seman-
tic model from the general semantic model via user-
specific knowledge. A case base stores past queries
and the corresponding association cases. After an SQL
query converts to a query feature vector, the case base
is searched based on the similarity of the input query
to queries in the case base. The matched associative
attribute candidates are displayed to user for selection.
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Figure 1: The associative query answering process by
query feature matching.

The query is extended with the selected attributes and
is sent to the DBMS for execution. Each query, with
its association and user feedback, is recorded in the
case base for future reasoning use.

For a given query, the system first locates similar
query cases with the same topic. If such query cases
exist, the associative attributes are used as the associ-
ation. Otherwise, query cases with related topics are
searched and the query feature similarity is used to
guide the search process.

3 Database schema and semantic

model

In relational databases, relations are constructs used
for representing entities and relationships (5]. To ex-
plicitly express the semantics in the relations, we con-
struct a semantic (EER) model based on the database
schema [6], user-defined relationships, and mapping
from its constructs into the relations in the database.

The semantic model is represented as a directed
graph called semantic graph. The nodes in the graph
are entities and complex relationships that have cor-
responding relations in the database. The edges are
links (i.e. joins) among relations. The user can define
additional nodes and edges for his views in his own
model. The semantic graph is further divided into
a set of overlapping query contexts, each of which is
a connected component of the user’s semantic graph,
and reflect the user’s interests on the database when
performing a certain task. A query topic is a con-
nected component of a query context. A query is a
constraint on a topic, i.e. a selection on instances of
a topic, with an output attribute list. Fig. 2 shows a
context of the semantic model about aircrafts and air-
ports for a transportation database, where “landing”
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Figure 2: A query context about AIRCRAFT and
AIRPORT for a transportation database.

is a user-defined link.

To compare the similarity of query topics, we assign
weights for the nodes and edges in each query context.
Weights are used to measure the relative importance
of the semantic contents of the links in the graph. An
equal unity weight is assigned to all nodes. Weights
for the edges are based on their semantic contents,
or the context specificity of the links. For example,
in Fig. 2 “landing” is a more specific link compared
to other links, thus a larger weight is assigned. The
weight for a path is the sum of weights of the nodes
and edges on the path. For any two nodes, if one
path connecting them has larger weight than another,
the larger one is considered containing more specific
semantics than the smaller one (7, 8]. Let queries Q@
and Q; contain a common path with weight w,, Q1
and Q3 also have a common path with weight ws. If
w, > wp, then the topic of Q; is more similar to Q>
than Q3. The same links may have different relative
importance under different contexts, and the weight
assignment is user and context sensitive.

4 Query feature and similarity
4.1 Query feature vector

A query can be characterized with the following
components:

1. a topic graph, T, defining the topic of the query;

2. an output attribute list, O, defining the queried
aspect on the topic;

3. a set of selection conditions, C.

We shall denote Q =
a query.
For an SQL query with a single SELECT statement,
a feature vector can be constructed. Fig. 3 shows
the SQL query and its feature vector for the exam-
ple stated in the introduction.
4.2 Topic relationships among queries
For two queries Q) (T1,01,C1) and Q2 =
(T2,02,C2), the relationships of their topics can be
used to derive the associative information.

(T,0,C) as the feature vector of




CERY LST ARPORTS IN TUNISIA THAT CAN

-
LAND A C-§ CARGO PLANE. [[weeomT == counmay ]

saL QUERY- [
SELECT P ARPORT_NAME
[wAcRart_cuns 2201 mawar |

FROM ANAPORT P RUNWAY R,
COUNTRY C. ARCRAFT_CHARS A
QUTPMIT ATYRINTE LIST O
ANRPORT AIRPORT _NAME

10910 GAAPH T:

WHERE P ARPORT_NAME « R AIRPORT NAME AND
RLENGTH_FT »a ALANDING_LEN_FT AND
AWIOTH_FT 2e ALANOING_WIDTH_FT AND
P.COUNTRY_CODE = C.COUNTRY_CODE ANG SELECTION COMSTHAINTS G

C.COUNTRY MAME » TUNISIA' AND { C.COUNTRY _NAME » TUNISIA",
AANRCRAFT_TYPE = T¥ AANRCAAFT TYPE « T-F'}

Figure 3: Feature vector for the example query.

1. Same topic: T\, = T5. If 0,0, # 8, then Oy -0,
may be used as associative attributes for Q;.

2. Sub-topic: Ty C T>. T; is a subtopic of T, and T
is a super topic of T). T; can be extended to T,
and Oz —~ 0 can be used as possible associative
attributes for Q,.

3. Overlapped topics: Ty ¢ T, and T} 2 T3, but
TyNT; # 0. Similar to the sub-topic relationship,
Ty — T; can be used to extend T}, and O, ~ O,
are possible associative attributes for Q;.

4. Unrelated topics: Ty N T; = . The topics of Q
and Q; are not directly related. No associative in-
formation can be derived from an unrelated query.

4.3 Query similarity

Query similarity is based on three components of
the feature vector: query topic, output attribute list,
and constraints. Their relative importance is given
by their corresponding weights: w;, w,, and w,, with
wy + w, + w, = 1. The weights are user and context
dependent.

For an input query Q; = (T},01,C)) and a query
in the case base Q; = (I,,0,,C,), the similarity of
Q, and @Q; is defined as:

0(Q1)Q2) = wg X 0C(QI1QZ) +
wo X 0,(Q1,Q2) +
We X oc(leQZ) (1)

where 8,(), 8,(), and 8.() are the similarity functions
for the topics, output attribute lists, and selection con-

straints, respectively. -

The topic similarity is based on the size of the com-
mon topic components relative to the size of both top-
ics together as follows:

Ty NTy|

[Ty U Ty @)

0! (Ql) Q2) =
where |T’| is the size of the topic, defined as the sum
of weights of all nodes and edges. For instance, if the
two topics are the same, then their topic similarity is
1. If a topic is a sub-topic of another, their similarity
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is the ratio of the size of the sub-topic to that of the
super topic. Non-related topics have similarity of 0.
The similarity of output attribute lists is defined as:

'01 002|

90(QhQ2) = |01'

@)

which is based on the number of attributes in 01 con-
tained in O, and reflects the proximity of the queried
aspect of @, to that of Q,.

The similarity of selection constraints is based on
two factors: the number of the identical condition pat-
terns and the similarity of values for these condition
patterns. To evaluate the similarity, we divide C into
a mapping S and a tuple of constants V. When the
mapping is supplied with the constant values as the ar-
guments, the set of selection conditions is generated.
For example, if we have two selection conditions:

C.COUNTRY_.NAME= '"TUNISIA’,
A.AIRCRAFT.TYPE = 'C-5’

then we have S {C.COUNTRY NAME
$1,AAIRCRAFT.TYPE $2}, and V
('TUNISIA') DC —8—61'), where $1 and $2 refer to
corresponding components of the tuple. S(V) is the
above selection conditions. We have

0c(Q1,Q2) = 0,(Q1,Q2) x 6,(Q1,Q2) (4)

where 8,(Q1, Q2) is the similarity of mappings, defined
as:

ISI nSﬂ
ISl USzl

and 6,(Q1,Q2) is the similarity of constraints values
for the common conditions. Assume there are k com-
mon conditions and the projections of tuples V; and
V2 onto these common conditions are represented as
sets Dy, ..., Dy fori = 1,2, 8,(Qy,Q2) is defined as:

0,(Q1,Q2) = (5)

k
0,(Q1,Q2) = £ x 3 (1~ RE(Dy;, Dzy).  (6)

j=1

where RE() is the relaxation error [9] for two sets of
values, which is the average pair-wise distance of ele-
ments from each set. The RE() values are provided
from a tree-structured classification hierarchy TAH
(10, 11] and is normalized into [0,1]. As exceptions
to equation 4, if |S; U S;| = 0 (i.e. no selection con-
ditions in both queries), then 6.(Q;,Q2) = 1. And if
one of them is empty, say S), then the S is treated
as equal to Sy, with constants being the projections of
the attributes from the database.




For the Puot: For the Planner.

ASSOCIATIVE ATTRIBITES &0: ASSOCIATIVE ATTRIBUTES. 50
RUNWAY.TARMAC_QUALITY FACILITY. RAILWAY
WEATHER.CONDITION FACILITY.STORAGE

10PIC EXTENSION 5T IOPIC EXTENSION ST

has n
[_ARPORT —>{ WEATHER] [(wRpoRT —=>{ FaciiTy ]

Figure 4: Possible associations for the example query.

5 Searching associative attributes from
case base

Given an input query Q@ = (T,0,C), an extended
query with associative information is Q' = (TU4T, OU
80, C), where 60 is a set of the associative attribute
candidates and 6T is the necessary topic extension to
derive these associative attributes. The associative
extension denoted as (60, 6T) should not change the
user’s constraints on the query topic. Our goal is to
determine (0, 6T) for the query Q. Fig. 4 shows the
associations for two user types for the query exam-
ple, and the corresponding query context and feature
vector are shown in Fig. 2 and 3.

5.1 Search process

Searching of case base is done for each user type
and context. Each query case in the case base is rep-
resented by its feature vector, and a log of past asso-
ciative extensions of form (60, 6T) with positive user
feedback (60,, 6T,,) when each time the case is applied,
where 60, C 460 and 6T, C 6T and they are user
selected attributes and corresponding topic extension.
Thus, 60-60, and 6T 4T, are the negative feedback.
Each case is time-stamped for ordering purposes.

The case base is organized based on the query topics
at the first level, the output attribute lists at the.sec-
ond level, and then selection constraints at the third
level. The cases are classified into groups based on
these levels. The relationships among topics are linked
to facilitate the search.

Given an input query Q = (T, 0, C), the search pro-
cess is outlined as follows:

1. If there is a set of cases with the same topic as T,
use the same topic matching, in which search for
associative attributes is limited within this case
group. If the same topic matching is successful,
the search is completed;

2. Otherwise, use related topic matching, where
search is first expanded into the sub-topics and
super topics, and then to the overlapped topics if
necessary.

The success of the search process is based on the num-
ber of relevant associative attributes required, which
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can be determined either by system default heuristics
or by the user. :

The associative candidates are displayed to the user
for selection. The selected associative attributes (posi-
tive feedbacks) are extended to form a new query. The
associative extension is recorded into the case base.
The details of the search will be discussed in the fol-
lowing sections.

5.2 Same topic matching

The set of query cases with the same topic as the in-
put query are searched. The single most similar query
case is used at first and its log is retrieved for eval-
uation. The search process terminates if the associa-
tive attributes provide sufficient relevant information.
Otherwise, less similar query cases are considered for
association, and the process is repeated until sufficient
relevant associative information is obtained or all the
cases with the same topic are exhausted.

The usefulness evaluation for an attribute is based
on the similarity of the query and usefulness weight
of the attribute, which is calculated from the feed-
back history. Two different schemes based on history
importance are proposed for usefulness weight calcu-
lation. One is to give all the cases in the history the
same importance, which we call equal importance (EI)
scheme. The other, called recently used (RU) scheme
places more importance on recent cases. The former
is suitable for a stable database and users with stable
behavior, and the latter more suitable for a database
incurring many updates or users with transient behav-
iors.

For the EI scheme, the weight assigned to an asso-
ciative attribute can be calculated as follows:

_. 1+N,

Wer = d+ N, + N, Y
where N, and N, are the positive and negative coun-
ters respectively, and d > 1 is used to control the effect
of the first few feedbacks.

For the RU scheme, all the feedbacks are ordered
based on the time sequence, and Ny, Np, Ry, and R,
are the total positive and total negative feedbacks, and
recent positive and negative feedbacks, respectively.
The recent feedbacks are counted based on the most
recent turning points in the feedback sequence. The
weight is calculated as:

N axo_
Np + Ny, R, + R,
where 0.5 < a < 1 is used to control the relative sig-
nificance of the recent feedbacks.

The relevancy of an associative attribute from the
same query cases is the usefulness weight of the at-
tribute from equation 7 or 8, times the similarity of

Wnu=(1-—a) X



the queries from equation 1. The total usefulness is
the weighted average from each group by the number
of cases. If the total usefulness is greater than a cer-
tain threshold (e.g. 0.3), then it is a useful associative
attribute. The threshold value depends on context,
user profile, and should be estimated experimentally.
5.3 Related topic matching

If the association search on the same topic query
cases does not provide sufficient information, then
search is expanded to the sub-topic and super topic
groups, and to the overlapped topics.

For the set of queries {Q; = (T},0:Ci)li =
1,...,n}, where n is the number of cases under eval-
uation, -each attribute in O; is assigned a weight in
accordance with query similarity (equation 1). All the
attributes from the searched queries are merged. The
weight for an attribute o € U;0;, W(0), is:

W(o) = _m(o,0:) *8(Q, Qi)

=1

(9)

where the membership function m(0,0;) is 1 if 0 €
O;, and 0 otherwise. The list is sorted based on the
attribute weights.

For query cases with super topics, both simple asso-
ciative attributes and extended associative attributes
can appear in the result. For each extended attribute,
the corresponding topic is used for deriving 6T, which
is the path in the super topic from the node containing
the attribute to a node in the input query topic graph.

6 Conclusions

A query feature based associative query answering
from case base is proposed in the paper. A query fea-
ture consists of its topic, its output attribute list, and
the selection constraints. For a given query, the topic
similarity of cases is evaluated from a user-specific
semantic model based on the database schema, user
type, and context. A case base that records the past
user queries and association cases is used for search-
ing for associative attributes, which is based on the
user type, context, and the query features. Cases
with a same topic are searched first, then followed by
searching the related cases with sub-topics, super top-
ics, or overlapped topics if the same topic searching
does not provide any relevant information. We are
currently in the process of implementing the proposed
approach on the CoBase system [9]. We plan to evalu-
ate the improvement of using the proposed query fea-
ture approach as compared with the attribute linking
approach which searches past cases that have a same
attribute either from the output attribute list or the
selection constraints [3].
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Abstract. We present an extended ER model with entity, role, and
association as the basic constructs for object-oriented modeling. The
purpose of the constructs is to support object evolution and extension
for long lived objects. A class hierarchy consists of a static part and a
dynamic part. The static part is a classification of entity classes, while the
dynamic part is the role classes played by entities. The interaction among
objects are captured with association classes. Based on the observation
that entities play roles in association with other entities, we provide a
unified view on roles in associations and roles as an extension to objects.
The proposed modeling constructs help developers better understand the
interrelationship among entities, thus result in flexible implementations
for dynamic systems.

1 Introduction

Object-oriented systems provide more constructs than relational systems to
model and support application semantics. However, in the current object-oriented
models there is a lack of direct association support and a lack of systematic
support for dynamic object evolution. In this paper, we introduce an entity-
role-association modeling framework. Entity classes will be used to capture the
static ISA hierarchy of the fundamental objects being modeled in the system.
Role classes will be used to capture the ISA hierarchy of roles that entities can
dynamically assume throughout their lifetime in the system. Further, the associ-
ation class construct is introduced to explicitly model the relationships entities
can participate in as they evolve through various roles during their lifetime.
Altogether, our entity-role-association model provides a useful extension to Q0O
modeling that supports dynamic object evolution. In our model, all the instances
of entity classes, roles classes, and association classes are objects.

Relationships among entities is one of the fundamental constructs in semantic
modeling as indicated in the original Entity-Relationship (ER) model [Chen76]
and later extensions [TYF86, HK87, PM88]. The relationships in the original
ER can be viewed as refined into different relationships in later extensions, such

* This research is supported in part by DARPA contracts No. 30602-94-C-0207, No.
N66001-97-C-8601, and US Air Force contract No. F30602-96-1-0255.
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as ISA relationship and others. Association is the term commonly used to refer
to the interaction among objects [Rat97]. The associated objects are the roles
of the association. In object-oriented systems, objects interact with each other
by sending and reacting to messages. Real world entities are usually modeled
by objects, and the state and other properties of associations often have to be
encapsulated into the role objects involved. However, the properties of interac-
tions, or associations, can be captured and represented in separate “association
objects”.

Tanzer [Tan95) presented a critique on the current practice of using regular
instance variables for associations. The main problems of using regular classes
and pointer/reference instance variables for associations are: (1) For classes with
existing objects, it is not easy to insert an instance variable for a new association.
(2) Constructing association instances using regular classes for polymorphic as-
sociations needs typecase testing on the roles. (3) Using direct multiple dispatch-
ing [Ing86] or the visitor pattern [GHIV95] to achieve multiple polymorphism
for associations is a complex scheme. Further, it requires the methods to be
added into role classes, thus increases code dependencies among modules, and is
only partially extensible. In this paper, we propose association class construct for
complex association modeling and support, and provide implementation schemes
to resolve these issues.

We have used the role concept within the context of associations above. Let
us now introduce another role concept in object with roles for dynamic aspects
of objects [GSR96, RS91, Pern90, Alba93, WCL97]. In traditional class-based
object-oriented systems, an object is uniquely represented by an instance of the
most specific class in the class hierarchy that the object qualifies. Sometimes the
static ISA relationship results in complex class hierarchies, and causes problems
for object evolution. Object with roles is a way to remedy these problems. Under
this extension, an object has an instance corresponding to the base (role) class,
and a set of role objects that the object is currently playing. An object can
acquire roles or drop roles dynamically. A role implicitly inherits the properties
of its player. Object with roles extension provides object-oriented systems with
more flexibility and expressive power.

For example, a person in a university can be a student. He can also be an
employee if he is a TA or RA. The traditional class hierarchy is shown in Fig. la.
If John was only a student at the beginning, he was represented by an instance of
“Student” class. But later he became a TA, and had to be represented with an
instance of “Student-Employee” class, while keeping the same object identity,
which is a problem. An instance of “Student” cannot become an instance of
“Student-Employee” without change of its object identifier. If we create a new
instance, all the references to the old object will have to be changed to the
new instance, which is very costly if not impossible?. If both instances are kept,
there will be some redundancy, causing potential inconsistency. We call this
object reclassification anomaly. Using objects with roles, “Person” can be an
entity class, and “Student” and “Employee” are two role classes of “Person”

2 Some systems use becomes to support this. But a new object needs to be created.
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(Fig. 1b). Thus John can be represented by a Person object with a Student
role at first. He acquired the employee (TA) role when he became a TA later.
Multiple inheritance is also avoided in this case.

s s N
_--4:-, [
| Swdent || Employee |
Student-Employee -
(a) ISA Hierarchy (b) Class-Role Hierarchy
CJ emiy — 15a !_.i Role === RoleOf

Fig. 1. ISA hierarchy and Class-Role hierarchy

Current research on object with roles and associations does not connect these
concepts together. Based on the observation that an entity can play a role in
association with other entities, we propose to unify the role concepts in object
with roles and in associations. Thus roles can be unified both conceptually and
in implementation under the entity-role-association scheme.

The paper is organized as follows. In section 2, we give an overview on model-
ing using entity-role-association. In section 3, we discuss association classes and
their features. In section 4, we discuss the relationships of associations related to
roles. Then in section 5, we discuss the relationships between players and roles.
An application example is presented in section 6. And finally, a comparison of
other related work is presented in section 7.

2 Modeling with Entities, Roles, and Associations

In our approach, the ISA relationship is subdivided into subclassing and role-
playing, the entity classes constitute a static classification hierarchy while the
role classes are dynamic aspects the entities can assume. The roles are played
by objects, which can be entities or other roles.

The entity classes are those that reflect the static aspects of the real-world
objects. The relevant entity classes are classified into a class hierarchy, in which
classes have the partial order ISA relationship.

Role classes capture the temporal and evolutionary aspects of the real-world
objects. The role classes themselves may also have class hierarchies to factorize
the common properties with the ISA relationship. The semantics of ISA relation-
ship for role classes are the same as the regular class inheritance (subclassing).
For example, Undergraduate ISA Student, and Graduate student ISA Student.
The player classes and role classes are related through RoleOf relationships, e.g.
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Student is RoleOf Person, ProjectManager is RoleOf Employee as shown in
Fig. 2.

Objects assume roles in their associations with other objects. Associations
may have attributes for states and a set of methods, collectively called properties,
in addition to the roles involved. Association classes are used to capture the
properties of associations among objects with specific roles. The number of roles
participating in an association is called the arity of the association. Association
classes among the same set of classes may form a hierarchy.

Fig. 2a shows the student-employee example with associations for Taking and
Offering courses. Note that Student and Employee are both roles of Person and
roles in associations Taking and Offering. It also shows that a ProjectManager
is a role of an Employee. Fig. 2b shows an example of medical image feature
relationships for the tumor in a patient’s brain, where a microlesion evolves to
macrolesion and its spatial relationship with the lateral ventricle changes from
disjoint to invading.

Lateral Ventricle

. ~

Invading

ay -7 .
(2 S Trell

h

v
! Microlesion | ) Macrolesion
......................

(a) Roles and associations of students and employees. (b) A growing tumor invades the lateral ventricle in a brain.

D Entity L._.! Role < Assaciation —— Assodiation Link == -> RuleOf Multiplicity (min, max) *: many

Fig. 2. Examples modeled by entity-role-association constructs.

The basic integrity constraints related to associations are:

1. Referential integrity: the role objects referenced in an association must exist
and have the right types. This is a constraint on individual instances.

2. Multiplicity: the number of association instances of the same class in which
each role can participate. The multiplicity of each role is specified with a
(min, maz) pair (as shown in Fig. 2), meaning that a role has to partic-
ipate in the associations at least min times and at most maz times. The
multiplicity is a constraint on collections of instances.

Based on the properties, associations can be divided into different kinds: (1)
Simple associations: A simple association is a simple link that does not have any
particular properties of its own. An example of a simple association is PartOf
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relationship. (2) Complex associations: A complex association is one that has its
own properties. Instances of associations are used to capture the interrelations
among objects. (3) Polymorphic associations: Polymorphic associations are the
same kind associations, but for different role classes they have different proper-
ties. These associations classes constitute a class hierarchy. For an association
instance and a given message to it, the behavior depends on the types of roles
involved in the association. For instance, a borrower borrowing a loan item from
a library is modeled by Borrowing association class, and loan period() is a
method of the association. Loan_period() depends on the borrower classes and
the loan item classes.

The entity-role-association scheme provides flexible basic model constructs.
Other high-level objects can be built on top of these basic constructs, e.g. by
grouping related objects. As a result, it can be used to specify dynamic and
evolving OO systems.

3 Association Classes and Their Features

We first propose a scheme for the association class definition, then discuss the
object-oriented characteristics for the association classes. To focus on the asso-
ciation construct and its properties, we ignore the RoleOf relationship on the
role class side in this section. We use a simple library model as shown in Fig. 3
to illustrate association features.

0.*)

Borrower

Borrowing

I Student I LEmplayoe ]

AN

lUndgradl I Grad I [Facuﬂy] [ Staff I

Fig. 3. A simple library model with association features.

An association class can be defined with its role classes, instance variables,
and methods. For example, Fig. 4 shows for the Borrowing association class
between Borrower and LoanItem for the library example in Fig. 3. The role
classes in the order they appear in the association class definition constitute the
tuple of role classes for the association. ‘

All the association classes in a hierarchy for the “same” type of associations
have the same name. For instance, if we want to capture the specialties of the
association in different cases. For example, the “same” methods loan_period
for Borrowing[Borrower, Periodical] and Borrowing[Faculty, Book] are
different, and they would be defined as association classes as follows:

association Borrowing[Borrower, LoanItem]{...};
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// association class name and the tuple of role classes:
association Borrowing(Borrower, LoanItem]
{ // normal attributes

Date loanDate;

Date dueDate;

Date returnDate;

// methods

virtual int loan_period() { ... }

Fig. 4. An association class definition for the simple library model example.

association Borrowing[Borrower, Periodical]:
Borrowing{Borrower, LoanItem]{...};

association Borrowing[Faculty, Book]:
Borrowing[Borrower, LoanItem]{...};

We now discuss the characteristics of object-orientation for the association
classes. The major differences between association classes and regular classes are
on the classification and polymorphism.

The constructors for association instances require a tuple of role instances
that corresponds to the tuple of role classes declared in the association class.
It is feasible that the constructors of the association classes are polymorphic,
based on the role classes. With polymorphic constructors, it is unnecessary to
do typecase testing on roles when constructing association objects. It puts more
restrictive classification limit on the association instances.

We shall present two other major features — inheritance and polymorphism
in the following sections.

3.1 Inheritance of Association Classes

One usage of inheritance is to specialize a class while allowing the subclass to
inherit common properties from its superclass. Association class inheritance has
its own features.

Implicit Inheritance. An association class defined for some role classes in
class hierarchies is applicable to tuples of their corresponding subclasses.

For the library gxample (Fig. 3), because {Undgrad, Book] < [Borrower,
LoanItem], the association class Borrowing[Borrower, LoanItem] defined in
Fig. 4 is applicable to tuple [Undgrad, Book]. Similarly, the same holds for
tuple [Grad, Periodicall.

Explicit Inheritance. The explicit inheritance of association classes is mainly
used to override the implicitly inherited association class properties, therefore
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the following special rules apply to the explicit association class inheritance: (1)
The subclass must have the same name as the superclass. (2) The subclass has
the same arity as the superclass. (3) The tuple of role classes in the subclass are
more specific than that of the superclass.

The following example shows how a subclass can be defined.

association Borrowing[Undgrad, Book]l : // subclass
Borrowing[Student, LoanItem] // superclass
{ ...
virtual int loan_period() { ... } // overriding
h

3.2 Multiple Polymorphism of Messages on Associations

Given a message on an association instance, there are the following two message
dispatching cases:

1. If the method is explicitly defined on the association class of the instance,
then the defined method is invoked.

2. If the method is not explicitly defined on the corresponding class of the
instance, then the implicitly inherited method will be invoked.

The method invoked depends on the role class tuple of the association in-
stance, thus is multiply polymorphic. To determine a unique method to invoke
for a message, the explicitly defined association methods must satisfy the un-
ambiguity requirement. For the library example, if we have loan_period() ex-
plicitly defined on Borrowing[Borrower, Book] and on Borrowing[Undgrad,
LoanItem], to avoid ambiguity, loan period() must be explicitly defined on
Borrowing[Undgrad, Book]. An algorithm can help check if this requirement
is met.

For any polymorphic methods that satisfy the unambiguity requirement, we
can determine a unique and most specific method to invoke for a message.

4 The Relationship Between Associations and Roles

When implementing associations, depending on the requirements and constraints,
there are two alternatives: intrinsic associations and extrinsic associations. In-
trinsic associations provide a direct navigation path from role instances to the
association instances, while extrinsic associations allow new associations defined
on existing objects. Both altérnatives can be realized as extensions atop “tradi-
tional” OO systems.

4.1 Intrinsic and Extrinsic Associations

In the intrinsic associations (Fig. 5a), roles are tightly coupled with the associ-
ations they participate in. An instance variable within each of the role classes
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is used for each association class, either single-valued or set-valued, depending
on the multiplicity of the role in the association. It is similar to the traditional
instance variable approach except that the instance variable now refers to the
association objects.

A

iati A L
Rule Object Role Role tas Rol
Ohicct |& e 8 Object Ohject Ohject Object I

(b) Extrinsic associaiton

(a) Intrinsic association

L

Pointer/Reference

Fig. 5. Intrinsic and extrinsic binary association instances with roles.

If the role classes have already been defined and we want to add more asso-
ciations but do not want to make changes to the role classes, or do not want to
add additional variables and methods to role classes for sparse associations, we
can use the extrinsic association (Fig. 5b). In such associations, no variables are
used within role classes for associations, instead, a collection of all association
instances is maintained, and the relationships from role objects to association
objects is recovered by explicit join between role objects and the association in-
stance collection. We call a collection of all the instances of the same association
class an association extent.

For example, we can maintain the collection for the Borrowing associations,
which can be defined or generated like this:

Multiplicity multi[] = {MANY, MANY};
extent<Borrowing> borrowing(multi);
// for a many-to-many association Borrowing

An association extent is a special collection class with integrity enforcement.
The association extent also needs to support associative search, join with roles,
and probably aggregate functions.

The advantages for the extrinsic association are flexibility in adding new
associations to existing classes, and centralized integrity maintenance for each
association class. Extrinsic associations also reduce code dependencies among
modules using the same roles. Polymorphism can be utilized without adding
methods into existing classes.

4.2 Interdependencies Between Roles and Associations

The referential integrity requires that the roles referenced in associations exist.
Therefore when an association instance is to be created, the roles either exist or
should be created at the same time. When a role is deleted, the deletion is cas-
caded to all the associations that the role is involved. An application may require
that the deletion of a role be prohibited if there are still existing associations

involving the role.
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On the other hand, a role may exist without participating in any associations,
that is, in the multiplicity of the role min = 0. For example, the borrower role
for a student belongs to this case, because a student is a borrower even he is
not currently borrowing any books. A role may be required to be involved in
associations for the role to exist, i.e. min > 0 for the role. A project manager
role in Fig. 2 belongs to this case, since a project manager is an employee who
manages a project.

Since there are references to roles in associations, the navigation from an
association to roles is always direct. However, navigation from a role to the asso-
ciation may not always be possible. Depending on the implementation scheme,
the navigation from a role to associations can be direct (intrinsic associations)
or indirect (extrinsic associations with extents).

5 The Relationship Between Players and Roles

A player of a role can be an entity or another role, which is ultimately played
by an entity. Depending on the situation and functionality requirements, a role
may be incorporated into an entity as a base role, and an entity may or may
not be aware of some or all of the roles it is currently playing. An entity may be
only shared by the extrinsic roles for redundancy elimination.

A base role is a role played by an entity for its entire lifetime in the system.
Thus, if the entity is not playing the base roles, it would not be included into
the system. Therefore there is no need to separate the base roles from the entity.
For example, Employee is usually considered as a base role and is not separated
from Person in a company personnel system.

Often it is unnecessary for the player to keep track of all the roles it is
playing. Thus, there are links only from the roles to the player. The roles cannot
be accessed directly from their player. We call these eztrinsic roles to the player
(Fig. 6a). The typical supporting scheme for extrinsic roles is the inheritance
by delegation [Taiv96]. That is, messages that are not part of direct interface
of the role are forwarded (delegated) to the player. The user of the role object
treats the role instance the same way as the role class inherits the player class in
subclassing. For instance, a student is a member of the student body, but he is
also a member of a club. The club member role can be modeled by an extrinsic
role.

When a player needs to know the specific roles that it is playing, the roles
are intrinsic, and the behavior of the player depends on these roles. The roles
may be only referenced by the player, i.e. unidirectional from the player to the
roles. In this case, roles are just part of states of the player (Fig. 6b). When the
relationship between the player and roles are bidirectional (Fig. 6c), in addition
to being accessed from inside the player object, the intrinsic roles can also be
referenced by other objects. For example, the properties of an employee and
his project manager role (Fig 2a) are dependent on each other, therefore, a bi-
directional intrinsic role for project manager should be used (as in Fig 6c).
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e——= Pointer/Reference

Fig. 6. Extrinsic and intrinsic roles.

The relationships between players and roles are either one-to-one or one-to-
many, with roles dependent of players, i.e. a role cannot exist without a player.
Since role classes cannot be instantiated without a player, players always exist
first. An entity can play multiple roles at the same time, and play different sets
of roles at different times.

The dependencies among players, roles, and associations have to be defined
precisely in the system model to achieve system integrity.

6 An Application Example

Let us use our experience in implementation of our CoBase [Chu96] project as
an example to illustrate the usefulness of the association class and role class.
CoBase is a cooperative database interface which provides query relaxation (ap-
proximate answers), associative querying (provides relevant answers that the
user does not explicitly ask for), and explanation that describes the relaxation
process and its reasoning. A portion of its classes and associations are shown in
Fig. 7, where RelaxEngine is for Relaxation Engine, AssocEngine is for Asso-
ciation Engine, and ExplanEngine is for Explanation Engine. These engines all
work on a uniform internal query representation (QueryRep). Part of QueryRep
component classes are shown in the left-hand side of Fig. 7.

There is a large class hierarchy for representing operands in SQL query con-
ditions with our cooperative SQL (CoSQL) [CID96] extension. Engine modules
of the system manipulate on a query representation (QueryRep) to achieve their
functionalities. The CoBase system is developed incrementally. In traditional
object-oriented way, many functions would have to be added gradually into the
operand class hierarchy. It would cause endless recompilations of all the code and
a fat interface that is the union of relatively independent functions for different
modules. If we extend functions outside of the QueryRep, we have to use a long
list of typecase tests to discriminate the types of the operands. Polymorphism
is important in eliminating these long lists of cases.

To reduce the dependencies among RelaxEngine, AssocEngine, and Explan-
Engine, we used the following mechanisms:

1. Extrinsic role classes for QueryCond classes are used for roles associated with
RelaxEngine and AssocEngine to keep their states. Extrinsic roles make
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their usage of QueryCond in RelaxEngine and AssocEngine independent of
each other.

2. Extrinsic roles are used for the conditions that need to be explained in
ExplanEngine. As a result, there are only dependencies of ExplanEngine
on RelaxEngine and AssocEngine, but not the other direction.

3. Intrinsic associations are used for the associations on the RelaxEngine,
AssocEngine, and ExplanEngine, so that the manipulation of these associ-
ations is direct from these respective engines.

ot (L1) Relax (1,1)
t v ' .
,,{ RelaxCond T ’ RelaxEngine
g

l SingleCond J rConMom

SelectCond I JoinCond l

Fig. 7. Hlustration of associations and roles in part of the CoBase system.

Our experience has revealed the association and role constructs not only
increase expressive power, but more importantly, greatly simplify system devel-
opment and maintenance.

7 Related Work

The association construct proposed in this paper is related to semantic data
modeling, object modeling technique(OMT), multi-methods in functional OO
languages, and traditional relational database integrity constraints.

The importance of supporting explicit relationships in object-oriented sys-
tems has long been recognized [Ditt90, Rumb87, Tan95]. There have been also
several attempts in supporting relationships in object-oriented databases [AGO91,
Brat91, Catt96, DG91, NQZ91]. In [Rumb87], Rumbaugh proposed relation as a
construct to support associations. A relation is a collection of associations, but
associations are not objects and cannot have methods. The relationship support
proposed in [Brat91] is similar on this aspect. In [AGO91], an association is a
set of distinct bindings, each of which is like a value tuple. Their association is
more like our association extent, or an extension to relations for relationships in
relational databases. The major difference is that our association also empha-
sizes the properties of individual association instances. ODMG-93 [Catt96] has a
relationship prefix for instance variables that are for associations to maintain
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integrity constraints, but no special construct for associations. An association
concept in OMT is proposed by Rumbaugh et al.[Rumb91] and used in object
relationship modeling and translation into regular instance variables. These lat-
ter two proposals suffer some of the problems as pointed out in the introduction
of this paper.

Our work is similar to those in semantic data modeling{Chen76, HK87, PM88,
TYF86], which focuses on structural aspects of representing semantics in differ-
ent constructs. However, we introduced behavior modeling with object-oriented
constructs.

Multi-methods in OO languages[BK86, Cham92, MHH91] provide multiple
polymorphism and is a well-studied topic for multiple polymorphism and dis-
patching. But they are not as well organized and have been criticized as not being
object-oriented, since they are not tied with any objects. Association class con-
struct makes multiple polymorphism a natural property of association instances,
an extension to the current object-oriented model.

Object-role modeling [Bron95, SD96] allows bottom-up analysis, based on lo-
cal relationship properties. Then the roles can be integrated into classes. Object
with roles extension to object-oriented systems [GSR96, RS91, Pern90, Alba93,
WCL97] aims at solving the object evolution problem, thus provides more flex-
ibility to the class-based systems. We are unifying them under the entity-role-
association scheme, combining the benefits from both.

8 Conclusions

We have proposed entity-role-association as basic constructs for supporting flexi-
ble applications and studied the properties and relationships of these constructs.

The ISA relationships among classes are subdivided into ISA and RoleOf
relationships. ISA is used for static classification and RoleOf is for dynamic
role-playing and object evolution.

A new association class construct is proposed. Its object-oriented features are
presented. ISA relationship in association class hierarchy has its special features.
Different implementation scheme of associations meet different needs. The intrin-
sic association allows easy referential integrity maintenance, while the extrinsic
association allows easy extension for existing classes and objects. The extrinsic
association also allows polymorphism without adding methods into role classes,
which can improve the code dependencies among modules.

The role concepts from object with roles and associations are unified based
on the observation that entities play roles in association with other entities.
The roles are classified into extrinsic roles and intrinsic roles. Extrinsic roles
provide easy extension to existing objects, while intrinsic roles allow players to
adapt their behaviors based on the roles they are playing. The different role
classification allow developers to choose suitable roles in their implementation.

The entity-role-association scheme supports bottom-up analysis and easy in-
tegration of submodels. The proposed constructs not only provide clear seman-
tics, clear interdependencies, and guidance for the implementation with current
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OO techniques, also can be supported as language constructs. Our experience
shows that our proposed model provides useful software structure, and also re-
sults in easy software maintenance.
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Abstract

This paper gives algorithms to compute the explanation of instance
membership in classes over an Inference Hierarchy. O(c) time algo-
rithms are given to compute the positive, negative, and conditional
explanations over an Inference Hierarchy limited to conjunctive par-
ents, where c is the total number of conditions in the Inference Hi-
erarchy!. Algorithms requiring O(c2k) time and space are given for
computing the k-minimal positive, negative and conditional explana-
tions over disjunctive hierarchies with independent conditions. Worst-
case exponential time is required for computing negative and negative
conditional explanations over disjunctive hierarchies with dependent
conditions. All types of explanation are worst-case exponential time
for the k-minimal explanations over hierarchies using negation in par-
ent ‘relationships.

An application for these algorithms is provided. The application is
motivated by the DARPA ALP storyboard and provides active medi-
ation of airport facility status in a combat situation. These techniques
may be transferred to financial, administrative, and environmental do-
mains as well.

1 Introduction.

Active mediation systems monitor a dynamic pool of information and trigger
actions as pre-defined rule conditions match[4]. As the complexity of the
monitored information and the number of valid triggering conditions grows,
it is necessary to be able to explain either why or why not active mediation

'The number of conditions corresponds, roughly, to the number of classes in the Infer-
ence Hierarchy.
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rules match. Though there have been attempts to endow intelligent systems
with explanatory capabilities[11][9][10], little has been done to guarantee
that explanations are complete and correct. This paper defines a mechanism
for providing complete and correct explanation of positive, negative, and
conditional instance membership in class nodes of an Inference Hierarchy,
and then applies this mechanism toward the problem of active mediation of
airport facility status in a combat situation.

Section 2 of this paper gives the definition of the Inference Hierarchy
limited to conjunctive parents. Section 3 presents algorithms for computing
positive, negative, and conditional explanation of instance membership in
classes over Inference Hierarchies limited to conjunctive parents. Section 4
extends the Inference Hierarchy to include disjunctive parents and presents
the necessary extensions to provide positive, negative, and conditional ex-
planation of instance membership. Section 5 further extends the Inference
Hierarchy to include negation in parent relationships. Section 6 presents a
DARPA ALP active mediation example. Section 7 compares this work to
previous work.

2 Definition of the Inference Hierarchy

The Inference Hierarchy is a network of class nodes, where edges represent
parent relationships. A class node with multiple parents requires that an
instance be a member of all its parents? to be a member of the class. In
addition, each class node has a conjunction of conditions which an instance
must meet to be a member of the class. Finally the Inference Hierarchy
is a connected directed acyclic graph and requires a unique source node
representing the universal class.

2.1 Formal Definition of the Inference Hierarchy

Definition 1 (Class Node) A class node is N where N =< 1id, (P,,...,P),
(C1,...,Ct) >. Where id is the identifier of the node, P is a parent node
«dentifier, and C is a condition predicate that instances of N must satisfy.

Definition 2 (Inference Hierarchy) An Inference Hierarchy H is a topolog-
ically s~rted —ector of class nodes [Ny, ..., N,] where each N is a class node
definition.

“2This conjunctive requirement will be generalized to include disjunction and negation
of parent membership.
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The notation for the i-th node in H is N; =< id;, (P, ...,Pir,),
(Ci1y.--y Ciy;) >. The following conditions apply to H:

(1) idi=1id; =i=3
(2) Pig =1idj where 1 <k <ri=>j <.

(3)t1j=0,7y,=0andr; >1fori>1

Property (1) guarantees that all class identifiers are unique. Property
(2) guarantees that the hierarchy is acyclic. Property (3) guarantees that
the hierarchy has a unique ‘universal’ source node and the hierarchy is fully
connected.

2.2 Classification under a Conjunctive Inference Hierarchy

An instance 7 may be a member of any subset of class nodes. Presuming
that all conditions of all class nodes may be evaluated to true or false® on
T , there is an 0(n) algorithm to compute class membership over an n-class
Inference Hierarchy.

The classification of an instance proceeds by iterating over all classes in
the order of their definition. Because H is topologically sorted, the mem-
bership of all parent classes will have been established, so the parent mem-
bership expression may be evaluated to determine if the instance might be
a member of the class. If so, the instance is subjected to the evaluation of
the conditions of the class. If the instance meets these conditions then the
instance is marked as a member of the class.

Definition 3 (Instance Classification) The following algorithm classifies
the instance T over the Inference Hierarchy H = [Ny, ..., N,]:

Classify(r, [Ny, ..., Ny]) {
for i=1 ton) {
if (T € 1);',1 AN..ATE Pj’r‘. A Ci,l(T) AA Ci,ti('r))
then T € id;
else T ¢ id; }

3Note that this assumes the closed world assumption[8].
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3 Explanation of Classification

3.1 Positive Membership

The Question to be answered is “why is instance 7 a member of class X?”,
signified here as why(r € X).

Definition 4 (ezplanation of positive membership) The set C is an ezpla-
nation of T € X iff for all c € C, ¢(7) and for arbitrary instance 1/, for all
ceC,c(r)y=1"€X.

Theorem 1 For inference hierarchies limited to conjunction,
why(r € id;) = {Cia,...,Cig; } Ywhy(T € P;1) U ... Uwhy(r € By,) (1)
is the unique, minimal ezplanation of T € id;.

Proof:

By definition why(r € id;) = Ciyncestors(id;) Where Coancestors(ia;) are all
the conditions of all the class nodes above id; including {Cj,,...,Ciy;}. As-
sume that an explanation for (7 € id;) included c where c is a condition on
a class node in H and ¢ ¢ Concestors(ia;)- BY definition of the classification
algorithm, this c is irrelevant to the classification of 7/ € id;. Hence this c
need not be included in the explanation of 7 € id;. Thus an explanation
requires only conditions in Coyncestors(id;)-

Assume that an explanation does not contain ¢ where ¢ € Cyncestors(id;)-
This explanation allows for —¢, which based on the classification algorithm,
gives 7' ¢ id;. Thus an explanation includes every condition in Concestors(id;)-
Putting it together, the unique and minimal* explanation of 7 € id; is

Cancestors(idi ) ®

3.2 Negative Membership

The question “why is instance 7 not a member of class X” signified why(r ¢
X) may also be answered®.

*This minimality is absolute for Inference Hierarchies with independent conditions.
Otherwise, a simple constraint reduction mechanism may be applied to this set to derive
the absolute minimal set of conditions. For example salary > 10k, salary > 20k would
reduce to salary > 20k.

S5The integrity of this mechanism depends on the quality of the Inference Hierarchy. All
classes in the Inference Hierarchy must be ‘satisfiable’, that is for each class X there must

86




Definition 5 (ezplanation of negative membership)
The set C is the ezplanation of ¢ X iff forallce C, —c(ry=1' € X.

That is, a negative explanation is a set of condition predicates that if
reversed on 7, would imply 7 € X.

Theorem 2
why(r ¢ id;) = {C}, ..., Ci}Uwhy(r ¢ P u...u why(r ¢ B)  (2)

is the unique, minimal® ezplanation for T ¢ id; where C} (T)C]' (1) are all
the conditions of id; that evaluate to false on 7 and P|..P| are all the
parents of id; for which T is not a member.

Proof:

By definition why(r ¢ id;) are exactly those conditions ¢ € Clancestors(id;)
for which —¢(7). If all the conditions of why(T ¢ id;) were reversed then
all c € Cancesms(id‘.) would evaluate to true’. Based on the classification
algorithm, this would imply 7 € id;. Hence why(r ¢ id;) is an explanation
of 7 ¢ id;. It is minimal because if any condition in why(r ¢ id;) is not
reversed then 7 ¢ id;. o

3.3 Conditional Explanation

The explanation why(r € X ) will include all the conditions that establish
7 as a member of X. In a large Inference Hierarchy such explanations will
be too long. Users are not usually interested in this level of detail. The
user has in mind a more precise question. That is why(r € X It €Y)or

be an assignment of conditions that classify an instance 7’ into X. This is a reasonable
requirement for an Inference Hierarchy. If no instance could possibly be a member of a
class, why represent the class? (Even if the class represents an integrity constraint, rep-
resenting the integrity constraints acknowledges the possibility, that because of improper
data, an instance may be inferred to be a member of the ‘impossible’ class). The reason
why the hierarchy must be satisfiable is because there must be some assignment of condi-
tions on an arbitrary instance 7 that for an arbitrary class X classifies 7 € X. Otherwise
explanation of negative class membership will search for such satisfiability and fail after
an exponential number of condition assignment combinations. ’

®Minimal in the sense of reporting the fewest number of conditions that would require
reversal for 7 € id; to be true.

"Based on the stipulation that classes in the hierarchy must be satisfiable, the inter-
pretation where the non-explanatory conditions on 7 remain true is consistent.
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why(r ¢ X|r € Y). These conditional type questions enable the user to

request more concise explanations®.

The interpretation here is that the user fully understands, that is has all
explanations for, why(r € Y)°. The user is interested in what additional
information “explains” 7 € X or 7 ¢ X.

3.3.1 Algorithms to Compute Conditional Explanation

These algorithms give an efficient method for computing conditional expla-
nations by extracting a portion of the Inference Hierarchy, and computing
standard positive or negative explanation over that portion.

The algorithm to compute why(r € X|r € Y):

(1) if 7 ¢ Y then misconception(r €Y).
(2) if 7 ¢ X then misconception(r € X).
(3) Anchor = lub(X,Y).10

(4) Derive Xsyppore: the subgraph of the nodes containing all paths from
X to Anchor through the parent relationship.

(5) Derive Ysypport: the subgraph of the nodes containing all paths from Y
to Anchor through the parent relationship.

misconception(tr € Y = 7 € X) else
why(T € XO'UeT{Xsupport - Ysupport}) u

The algorithm to compute why(r ¢ X|T €Y):
(1) if 7 ¢ Y then misconception(t € Y).

(2) if 7 € X then misconception(t ¢ X).

8The basic question why{r € X) = why(r € X|r € id) and why(r ¢ X) = why(r ¢
X |T € id 1).

9This interpretation applies when the Inference Hierarchy is extended to include dis-
junction and negation.

1%7ub(X,Y) is the least upper bound of class X and class Y. This is defined as the
common ancestor of X and Y through which all paths from X to id; and all paths from
Y to id; pass where there is no descendant with the same property.

'\Where over specifies the sub-hierarchy over which to compute standard explanation.
Xsupport — Ysupport Obtains the sub-hierarchy rooted at Anchor containing all reachable
nodes of Xsupport given that no nodes of Yiupport may be traversed.
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(3) Anchor = lub(X,Y).

(4) Derive X, fyte: the subgraph of the nodes containing all paths from X
to Anchor through the parent relationship.

(5) Derive Ysyppore: the subgraph of the nodes containing all paths from Y
to Anchor through the parent relationship.

(6) if Xrefute C Ysupport then misconception(r €Y = 1 ¢ X) else
why(r ¢ Xo've"'{Xrefute - Ysupport})

4 Conjunction and Disjunction Inference Hierar-
chies

The extension to disjunction in addition to conjunction is the next!? step in
making the Inference Hierarchy more expressive. This is achieved by extend-
ing the formal definition of the conjunctive system to encompass disjunctive
parent relationships.

Definition 6 (Class Node) A class node is N where N =< id, ((Py 4, ...,
Pl,r;), 1(Pd,17---,Pd,rd))) (Cly veny Ct) >. .

Here the parent expression is in disjunctive normal form where the parent
expression is a disjunction of d disjuncts of conjunctions of parents class iden-
tifiers. The notation for the i-th node in H is N; =< id;, (P, 1,1, -, Pirrin)s
veey (Pi,d,-,l, - Pi,di»"i.d,- )), (Ci,l’ aeey Ci'gi) >.

4.1 Classification

Definition 7 (Instance Classification) The following algorithm classifies
the instance T over the Inference Hierarchy H = [Ny, ..., Ny]:

Classify(t,[Ny, ..., Np]) {
for (i=1ton) {
if for some j,1 < j<d;, (TEPj)N...ATE Pijri;)
/\Ci,l(T) A A Ci,t,- (T)
then T € id;
else r ¢ id; }

Ny ot

12 Addition of negation to the conjunctive system would necessarily add disjunction.
However adding disjunction does not add negation.
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4.2 Explanation of Positive Membership

Theorem 3 For inference hierarchies limited to conjunction and disjunc-
tion,

why(T € ’I.d,) = {Ci,ly ey Ci,t;} Uwhy('r € -Pi,j,l) u... Uwhy(‘r € P'iy]',"i,j) (3)

where 7 € Pij1 A..AT € P, jr.; for some j such that 1 < J < d;, is an
ezplanation of T € id;.

Proof:

Assume for an arbitrary 7' that for all ¢ € why(r € id;), ¢(r') and
7' ¢ id;. For i = 1 this is contradiction because by the classification al-
gorithm Ci1yCipy = 7' € td;. For the induction hypothesis, assume
that this is a contradiction for i < k. Now for i = ky Cin(7'), ..., Cig, (7).
Hence for at least one of the parent identifiers id, where k < i, for all
¢ € why(r € id;), ¢(7') and 7’ ¢ idk. This violates the induction hypotheses.
Thus based on the definition of the classification algorithm for conjunction
and disjunction hierarchies, 7’ € id;. Hence why(r € id;) is an explanation
of ' €id;. o

4.3 Explanation of Negative Membership

Theorem 4 For inference hierarchies limited to conjunction and disjunc-
tion, where the conditions of H are independent,

why(T ¢ id;) = {c,-.., C}} Uwhy(r ¢ P)U...Uwhy(r ¢F) (4)

is an ezplanation for T ¢ id; where C] (T)...CJ’- (7) are all the conditions in id;
that fail on v and P,...P; are gll the parents in one of the failing disjuncts
for which T is not a member only if all disjuncts of the parent ezpression of
id; fail for 713,

Proof: -

Assume that all the conditions ¢ € why(7 ¢ id;) were reversed for = and
all conditions in Cancestors(id;) — why(T ¢ id;) re - intained their values. For
t = 1 based on the definition of the classification algorithm for conjunction
and disjunction hierarchies, why(T ¢ id;) is an explanation of 7 ¢ id;. For

"If not all disjuncts of the parent expression fail for 7, then simply why(r ¢ id;) =
{C1,...C}}
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the induction hypothesis, assume that why(T ¢ idy) is an explanation of
7 & idy for k < i. Now for i, why(T ¢ id;) maintains that the conditions
{C1,...,C}} must be reversed for 7 € id;. In the case that at least on parent
conjunct is true, {C}, ..., C}} is the explanation of r ¢ id;. When all parent
conjunctions are false, then based on the induction hypothesis why will re-
turn explanations of these failures, and based on the induction hypothesis
such explanations will be correct. Thus, by induction, why(r ¢ id;) is an
explanation of 7 ¢ id;. e

It is no longer the case that there is a unique minimal explanation for
T € id;. In the worst case at each step there are d; choices to explain
membership in id;. Hence there are potentially an exponential number of
individual explanations!4. However using depth first search with branch and
bound the k-minimal explanations may be found in reasonable time.

A better solution is to propagate the k-minimal explanations at the time -
of classification. With each step in the classification propagate the k-minimal
explanations (positive or negative) up to that point and store temporarily
with the corresponding class node. This will pass the k-minimal explanations
to every node in the Inference Hierarchy in O(c?k) time and space.

Unfortunately for hierarchies with dependent conditions, the results of
negative membership explanations must be verified when the Inference Hi-
erarchy includes disjunction. This leads to a worst-case of exponential time
to find the k-minimal negative explanations.

4.4 Conditional Explanation

The conditional explanation algorithm may be applied almost unchanged to
hierarchies with disjunction. A new requirement is that nodes in X, supports
'Ysu,,pm must have 7 as an instance!5. The intuition here is that each class
node in Xsupport OT Ysupport should indeed “support” the classification of
T€ X ort €Y. Support is guaranteed through positive membership of 7.
Note that X, fute 18 unchanged.

Once the portion of the Inference Hierarchy is limited, then the prop-
agation of the k-minimal explanations via the classification algorithm may
be run over this portion of the graph to give explanation in O(c?k) time and
space.

Y Consider a purely disjunctive Inference Hierarchy where 7 is an instance of all classes.
The number of explanations is equal to the number of paths through the Inference Hier-
archy to the class membership being explained.

15This is always true in the conjunctive case.
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5 Conjunction, Disjunction, and Negation Infer-
ence Hierarchies

All that is required to add negation is to add a sign s to each parent identifier
in the disjunctive normal form expressing membership requirements among
parents. A “+” sign indicates that an instance must be a member of the
class, while a “—~” sign indicates that an instance must not be a member of
the class.

The notation for the i-th node in H is N; =< id;, ((s:1, Pir1y e Sigg -
-Pi,l,‘ri,l) 3oy (si,d,',l : Iji,d,-,l, -y si,d,',r,"di ’ -Pi,d.',r-,',d,- ))1 (Ci,h =eny Ci,t,') >.

5.1 Classification and Explanation

The classification algorithm is the same as the classification algorithm for
disjunction so long as signs are included and it is recognized that 7 € =X =
T¢ X and of course 7 € +X =7 € X.

As long as the sign bits are included, the standard positive and negative
explanation algorithm for disjunction suffices as well. A complication how-
ever is that the results of these explanations will consist of literals rather
than just atoms. The algorithm must simply embed signs in the conditions
that they yield.

The results of negative membership explanations must be verified when
the Inference Hierarchy includes negation. Because a positive explanation
may include the negative explanation of one of its parents, this leads to a
worst-case of exponential time to find the k-minimal positive or negative
explanations.

5.2 Conditional Explanation

The computation of X, support and Yyup00re is complicated. Let us restrict the
analysis to Xgyppore- Because 7 ¢ id; may “support” classifying 7 € X, the
simple rule in the disjunctive case is insufficient. X support Must include all
those class nodes which participate in classifying 7 € X over the Inference
Hierarchy rooted at lub(X,Y). This set may be computed by conducting a
depth first search upward from X and including only those class codes that
participate along a supporting explanation path terminating with lub(X,Y).
The same argument may be applied to Ysupport.

There is one more wrinkle. It concerns X, fute- It may be that forr € X
that 7 ¢ Y. That is there might be some condition that established Y that,
if reversed, would support X. The set that supports Y that if reversed would
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support X id referred to as Conflictxy. Such nodes must be included in
the standard negative explanation. That is why(r ¢ XOver{(X,. Fute —
Ysupport) U Cmflidx,y}) _

To compute Conflictx,y it is necessary to note the assumed signs in
Ysupport- In the depth first search to build X,efyte signs are pushed. If
the signs do not match Ys,pp0r: €xpectations, then the node is included in
Conflictxy. '

6 Active Mediation Example Scenario

A practical application of the Inference Hierarchy is motivated by the DARPA
ALP(Advanced Logistics and Planning) program. The ALP program is
interested in providing real-time notifications of logistics and battle field
events.

In the scenario here, a set of airports are automatically monitored and if
certain conditions are met, then a message is immediately sent to appropri-
ate personnel to give attention to a potential problem. The problems relate
to over or under utilization of airport resources, bad weather at airports,
enemy threats to airports, maintenance breakdowns at airports, and critical
risk situations at airports. The personnel to be notified are the logistics of-
ficers responsible for maintenance at airports, the field generals responsible
for the airports in their sectors, and finally the theater general responsible
for the complete employment.

6.1 Scenario Database Schema Definition

Airports are identified through the key ANUM and are positioned at a lati-
tude and longitude. The following static!® relation is populated with the
monitored airports in the scenario:

AIRPORTS (ANUM, location_name, lat, lon)

Given this static relation of airports, reports are continuously released
on the conditions at these airports and activity of enemy units. Reports are
released for weather conditions, maintenance records, status (in terms of how
many runways are available and how much fuel is available), and inventories
at airports. These reports on airports are in the following database relations:

'®There is only one static relation allowed per active mediation scenario. This static
relation holds the information about the entities that messages are generated for - Airports
in the scenario here.
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AIRPORT_WEATHER_RPT( ANUM, wind_speed, temperature,
precipitation)
ATIRPORT_MAINTENANCE_RPT( ANUM, num_disabled_aircraft)
AIRPORT_STATUS_RPT( ANUM, runways_available,
storage_space,fuel_supply)
AIRPORT_INVENTORY_RPT( ANUM, TYPE)

In addition to reports on airports, reports of enemy locations and force
types are released. Enemy reports are represented by the relation:

ENEMY_ACTIVITY_RPT( FORCEID, force_type, lat, lon)

6.2 Domain Knowledge
6.2.1 Scenario Action Rules

Action rules are usually defined by commanders (or managers)- such au-
thorities give broad definitions of who should be notified under high-level
conditions. In the scenario here it is decided that logistics officers should
be notified if there are maintenance crew problems at an airport, a field
commander should be notified if an airport in their sector is over-utilized,
under-utilized, or threatened, and the theater general should be notified if a
critical situation develops. The rules expressing these actions are provided
below.

NOTIFY-LOGISTICS-OFFICER if
Airport is experiencing a MAINTENANCE_CREW_PROBLEM

NOTIFY-FIELD-COMMANDER if
Airport is OVER_UTILIZED or UNDER_UTILIZED or THREATENED

NOTIFY-THEATER-GENERAL if
Airport is in CRITICAL_SITUATION

6.2.2 High-Level Concepts

Given a set of action rules, domain experts are called upon to define the
high-ler~l cor~epts used in action rules. These definitions are in terms
of other high-level concepts or are in terms of conceptual vilues. The
high level concepts for our scenario are OVER_UTILIZED, UNDER_UTILIZED,
THREATENED, MAINTENANCE_CREW_PROBLEM, and CRITICAL_SITUATION. The
following rules define these concepts:
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Airport is OVER_UTILIZED if FUEL_LOW or STORAGE_EXHAUSTED or
BUSY_RUNWAYS

Airport is UNDER_UTILIZED if
EXCESS_FUEL or EXCESS_STORAGE or EMPTY_RUNWAYS

Airport is THREATENED if
EXTREME_WEATHER or BOMBER_THREAT or
PANZER_THREAT or INFANTRY_THREAT

Airport has MAINTENANCE_CREW_PROBLEM if
BAD_MAINTENANCE and UNDER_UTILIZED

Airport in CRITICAL_SITUATION if
(THREATENED and OVER_UTILIZED) or
(THREATENED and SENSITIVE_INVENTORY)

Because the system here allows high-level concepts to be defined in terms
of other high-level concepts, a circularity in definition may occur. Such
circularities are not allowed in the semantics here. Circularity in definitions
is ruled out by requiring that rules are defined in order and all high-level
concepts are defined before they are referenced in antecedents of rules. This
is an example of imposing additional syntactic constraints on rule definitions
to rule out circularity in the rule-base.

6.2.3 Conceptual Values

Finally the conceptual values of the domain must be defined. These are the
only concepts which have conditions on the actual relational database. The
definitions of the set of conceptual values required in this scenario are given:

BUSY_RUNWAYS if (AIRPORT_STATUS_RPT:runways_available < 2)
EMPTY_RUNWAYS if (AFRPORT_STATUS_RPT:runways_available > 8)
FUEL_LOW if (AIRPORT_STATUS_RPT:fuelfsn?ply < 1,000 gal)
EXCESS_FUEL if (AIRPORT_STATUS_RPT:fuel_supply > 10,000 gal)

EXCESS_STORAGE if (AIRPORT_STATUS_RPT:storage_space > 10k m3)
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STORAGE_EXHAUSTED if
(AIRPORT_STATUS_RPT:storage_space < 100 m3)

BAD_MAINTENANCE if
(AIRPORT_STATUS_RPT:num_disabled_aircraft > 10)

SENSITIVE_INVENTORY if
(AIRPORT_INVENTORY_RPT:type in
{’cipher machine’,’spy records’, ’battle plans’})

EXTREME_WEATHER if
(AIRPORT_WEATHER_RPT:vind_speed > 25km) or
AIRPORT _WEATHER_RPT:precipitation > 1.4°)

BOMBER_THREAT at ANUM if
(ANUM NEAR_TO ENEMY_ACTIVITY_RPT:force_id and
ENEMY_ACTIVITY_RPT:force_type = ’Bomber’)

INFANTRY_THREAT at ANUM if
(ANUM NEAR_TO ENEMY_ACTIVITY_RPT:force_id and
ENEMY_ACTIVITY_RPT:force_type = ’'Infantry’)

PANZER_THREAT at ANUM if

(NEAR_TO ENEMY_ACTIVITY_RPT:force_id and
ENEMY_ACTIVITY_RPT:force_type = ’Panzer’)

6.3 Action Inference Hierarchy

Given the action rule, high-level concept, and conceptual value definitions,
it is necessary to build an action inference hierarchy that reflects this knowl-
edge in an active mediation system. A strict requirement of such a system is
that upon insertion, modification, or deletion of information in the database,
if an action is licensed by. the new information, that action must be executed
immediately. The action Inference Hierarchy is used to compute which ac-
tions are to be performed when report tuples are INSERTED, MODIFIED,

or DELETED.
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6.3.1 Hierarchy Creation

The following algorithm constructs the action inference hierarchy given the
database schema and the action, high-level concept, and conceptual value
rule definitions provided by the domain expert:

(1) Create a node in the hierarchy for each action, high-level concept, and
conceptual value rule. Define a database relation corresponding to
that node. This relation, termed the state relation, is a relation over
the key of the static relation.

(2) Add into each action node a DNF17 parent expression reflecting the
antecedents of the node’s action rule. In each antecedent node place a
child reference back to the given action node.

(3) Add into each high-level concept node a DNF parent expression re-
flecting the node’s antecedents. In each antecedent node place a child
reference back to the given high-level concept node.

(4) For each conceptual value node:

If the condition in the conceptual value rule references a database re-
lation whose key is not the key of the static relation, then add this
non-static key to the conceptual value node’s state relation.

6.3.2 Trigger Insertion

(5) For each conceptual value node:

Place an ECA trigger into the database relation upon which the con-
ceptual rule’s conditions are defined. The event is INSERT or UP-
DATE. The condition for the trigger is that the key of the triggering
tuple is not in the state relation of the corresponding conceptual value
node and that the condition of the conceptual value rule are true. The
action of the trigger is to insert the key of the triggering tuple into the
state relation of the conceptual value node.

Place another ECA trigger into the database relation upon which the
conceptual rule’s conditions are defined. The event is DELETE or

'"The translation of an arbitrary propositional expression into disjunctive normal form
(DNF) is straightforward.
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UPDATE. The condition for the trigger that the key of the triggering
tuple is in the state relation for the corresponding conceptual value
node and the negation of the condition of the conceptual value rule is
true. The action of the trigger is to delete the key of the triggering
tuple from the state relation of the conceptual value node.

Place a trigger on the event INSERT into the conceptual value node’s
state relation. The condition is true and the action is to insert the
static key of the of the inserted tuple into the state relations of all the
children of the conceptual value node for which the static key is not
already present.

Place a trigger on the event DELETE into the conceptual value node’s
state relation. The condition is that the static key of the deleted tuple
is not found in any other tuples across the conceptual value node’s state
relation and the action is to delete the static key of the of the deleted
tuple from the state relations of all the children of the conceptual value
node for which the static key is already present.

(6) For each high-level concept node:

Place a trigger on the event INSERT into the high-level concept node’s
state relation. The condition is that the inserted key should satisfy the
DNF parent expression. If it does then the action is to insert the key
into the state relations of all the children of the high-level concept node
for which the static key is not already present. If the condition is not
true then abort the insert into the node’s state relation.

Place a trigger on the event DELETE into the high-level concept
node’s state relation. The condition is that the deleted key should
not satisfy the DNF parent expression. If it does not then the action
is to delete the key from the state relations of all the children of the
high-level conceptgnode for which the static key is already present. If
the condition is not true then abort the deletion from the node’s state
relation.

(7) For each action node:

Place a trigger on the event INSERT into the action node’s state re-
lation. The condition is that the inserted key should satisfy the DNF
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parent expression. If it does then the action is to generate a notifica-
tion message with explanation and send this message to the appropri-
ate person.

Place a trigger on the event DELETE into the action node’s state
relation. The condition is that the inserted key should not satisfy the
DNF parent expression. If it does not then the action is to generate
a notification message with an explanation and send this message to
the appropriate person.

6.3.3 Example Hierarchy

Using this algorithm, the action rules, high-level concept rules, and the con-
ceptual value knowledge of the scenario, form the action Inference Hierarchy
in figure 1.

This diagram shows the class node identifiers and hyper-edges expressing
the DNF dependency relations for the action inference hierarchy.

Explanations over the action Inference Hierarchy are computed through
applying the algorithms discussed earlier in this paper. The state relations
in the nodes determine if an airport is a member of the class associated with
a node.

6.4 Example Reports and Generated Messages

We give here an example of this system by presenting a set of static airport
tuples and a set of reports that are released on airports and enemy positions.
Because there might be multiple reasons why a message is sent, a recipient
might request an explanation of why they received a message. Such expla-
nations may also be embedded in the message. In the examples here, these
explanations are provided in the message.

Consider that there are three airports tuples in the database:

AIRPORTS( 1, Tobruk, 30 N, 15 E)
AIRPORTS( 2, E1 Alamein, 29 N, 25 E)
AIRPORTS( 3, Alexandria, 28 N, 31 E)

This scenerio starts and the reports that are:

AIRPORT_WEATHER_RPT(1, 10 km/hour, 76 F, 0’’ rain)
AIRPORT_MAINTENANCE_RPT(1, O planes)
AIRPORT_WEATHER_RPT(3, 44 km/hour, 56 F, 4’’ rain)
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Figure 1: Action Inference Hierarchy for Airport Scenario.

To Field Commander Eisenhower: ‘‘Airport at Alexandria is
threatened because of wind speeds greater than 25km/hour.’’

AIRPORT_STATUS_RPT(1, 3 rws, 90,000 storage)
AIRPORT_STATUS_RPT(2, 3 rws, 40,000 storage)
AIRPORT_INVENTORY_RPT(1, cipher machin- ..
ENEMY_ACTIVITY_RPT(1, Infantry, 28 N, 12E)

To Field Commander Ritchie: ‘‘Airport at Tobruk is threatened
because German infantry force 1 is near by.’’
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To General Montgomery: ‘‘Airport at Tobruk is in a critical
situation because German infantry force 1 is near by and
there is a cipher machine on site.?’’

AIRPORT_MAINTENANCE_RPT(2, 7 planes)

To Officer Walker: ‘‘Airport at El Alamein has a MAINTENANCE
CREW problem because the number of disabled aircraft is ’high’
and the Airport at El Alamein is not low on fuel and does not
have busy runwvays and has not exhausted its storage space.’’

ENEMY_ACTIVITY_RPT(2, Panzer, 27 N, 23 E)

To Field Commander Ritchie: ‘‘Airport at El Alamein is
threatened because German Panzer force 2 is near by.’’

As an example of negative conditional explanation, General Montgomery
might ask why the airport at E] Alamein is not in a critical situation given
that it is in a threatened situation: The answer would be:

‘¢ The airport at El Alamein is not in a critical situation,
p
Because there is no sensitive inventory on site.’’

This technology could be integrated into a GIS. In such a system, airports
would indicate their status!® either through text annotatiors (as they are
here) or through color or other visualization techniques. The user would be
permitted to click on an airport icon and receive an explanation of why it
has the status it does. An explanation for why it has the status would then
be presented in a pop up window. Alternatively there would be a way to
let users request explanations for why an airport did not have a particular
status.

7 Comparison to Previous Work

As stated previously, there have been attempts to endow intelligent sys-
tem with explanatory capabilities{11][9][10]. Although such systems demon-
strated the usefulness of explanation, there was little in the way of formal
justification of the completeness and correctness of explanation. Though

18That is which classes in the action inference hierarchy it is a member of.
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the Inference Hierarchy is a simple computational mechanism, it does offer
complete and correct explanation of instance classification. In fact, because
of the undecidability problems for Turing equivalent mechanisms, complete
explanation requires computational simplicity.

Work in abduction[2] and in explanation-based learning][6][7] is mainly fo-
cused on finding most likely explanations of exogenous phenomena. In such
systems the information or knowledge provided for a problem is incomplete,
and the system is required to provide a hypothesis that best explains the
observed information. In the case of explanation-based learning, explana-
tions are generalized and used to repair the knowledge structures employed
in problem solving. In contrast, the work here is focused on the problem
of providing complete and correct explanations to external audiences of a
simple, modular computation system - the Inference Hierarchy.

The Inference Hierarchy mechanism employing conjunction and disjunc-
tion is similar to the instance recognition problem in description logics[1][5].
Such knowledge representation systems employ conjunction and disjunction
as well as other concept restrictions. However the Inference Hierarchy does
not presume that it is representing concepts and may be used to represent
arbitrary states in a computation. Moreover this work treats the prob-
lem of computing explanation of instance membership over such hierarchies
whereas description logics are mostly concerned with computing the sub-
sumption partial ordering among defined concepts. Notably in this work
the question of negative instance membership along with conditional expla-
nation is treated.

This work relates to work in generating explanations for misconceptions
in database queries[3]. In DATALOG, queries may involve view predicates,
predicates recursively defined over others. Furthermore, a predicate may be
defined by several clauses, which adds disjunction. So a query’s derivation
tree is an AND/OR tree. A query is a complex misconception if there
is no path by which it may have answers. An explanation of a complex
misconception then must account for the possible derivation paths. This
relates to some of what is being explored here, especially in the more general
case of taxonomies with-negation and disjunction.

The Inference Hierarchy is applied to the problem of active mediation
of relational databases. Through the use of simple ECA triggers and the
addition of O(n) temporary tables, the Inference Hierarchy may be inte-
grated with a relational database system. This extends the space of scalable
active database approaches that leverage off of simple ECA triggers on re-
lations. The explanation algorithms give more than a simple enumeration
of the rules matched; it gives minimal sets of matching conditions, as well
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as negative and conditional explanation.

8 Discussion

An explanation should be concise and, in itself, useful to a user. Conditional
explanation promotes concision by avoiding explanations that include what
the user is already aware of. To consider the question of what is useful to
the user, we must consider why an explanation is being sought.

An explanation is requested either because the user is curious about
why an inference is or is not made, or because the user wishes to perform
a corrective action to lead to, or away from, an inference. Let us term
the former type of explanation probative and the later type of explanation
corrective.

As an example of probative explanation, suppose a commander is sur-
prised to hear that there is sensitive inventory at a sight that had previously
been considered inconsequential. The commander seeks an explanation to
get a more complete understanding of the situation. This works in the nega-
tive case as well. The commander may be surprised to find out that a facility
is not considered threatened. Reporting that the facility has a special de-
fensive barrier is an explanation. For probative explanation it is useful to
supply a series of alternative explanations if they exists. Based on economy
of communication, and given no other information, a good heuristic is to
present those explanations with the fewest number of conditions first. In
general the algorithms in this paper enable practical generation of the k
minimal explanations.

As an example of corrective explanation, suppose a commander hears
that one of his airports is threatened and he would like to alleviate the
situation. This is the positive case of corrective explanation where a set
of conditions that, if reversed, would lead to non-membership in the class.
For example, to make the airport at Tobruk not threatened, neutralize Nazi
force 1. In the negative case, the commander is presented with conditions
that if reversed would establish membership in the class. For example To
make the facility operational, supply it with 7,300 gallons of gas and a
new barracks to sleep 120 soldiers. Corrective explanation is different than
probative explanation for two reasons. First the conditions in a corrective
explanation should be weighted based on the listeners ability to reverse the
conditions. This adds additional representation requirements and compli-
cates algorithms for finding globally minimal explanations. Second for a
positive corrective explanation to be useful in itself, it must include all sup-
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porting inference paths. That is all supporting inference paths that lead to
the instance being inferred to be a member of the class must be blocked.
Interestingly corrective explanation in the negative case does not require
this. Only one path of inference that the user can open suffices!® Special
purpose algorithms that seek to provide a minimal set of minimal explana-
tions that block all paths of inference may serve as the basis of providing
positive corrective explanations. In the simplest case, this will consist of a
single condition on the class in question. In the most complex case, the set
of blocking conditions will have to be identified.

9 Conclusion

O(c) time algorithms are given to compute positive, negative, and condi-
tional explanation over an Inference Hierarchy limited to conjunctive par-
ents, where c is the total number of conditions in the Inference Hierarchy.
Algorithms requiring O(c®k) time and space are given for computing the
k-minimal positive, negative and conditional explanations over disjunctive
hierarchies with independent conditions. Worst-case exponential time is re-
quired for computing negative and conditional negative explanations over
disjunctive hierarchies with dependent conditions. All types of explanation
are worst-case exponential time for the k-minimal explanations over hier-
archies using negation in parent relationships. The Inference Hierarchy is
applied to the problem of active mediation of relational databases. Infer-
ence hierarchy algorithms are implemented through triggers and temporary
relations.
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Abstract

A new approach for query formulation based on a semantic graph model is presented, which
provides a semantic representation of the data in the database augmented with user-defined re-
lationships. The graph model can be semi-automatically generated from the database schema.
The query formulator allows users to specify their request and constraints in high-level con-
cepts to formulate queries instead of using a database query language. The query formulator
completes a query based on the user input and ranks the formulated query candidates ac-
cording to the probabilistic information measure.‘ English-like query descriptions can also be
provided for the user to resolve ambiguity when multiple queries are formulated from a user
input. Further, the system allows the user to interact with the system and the user can select
the desired query. A prototype system using the proposed technology with a multimodal in-
terface consisting of GUI and voice interface has been implemented at UCLA. The formulator

is operating on top of the cooperative database system (CoBase) to formulate SQL queries.

1 Introduction

Most database interfaces provide poor guidance for ad-hoc query formulation which burdens the
user to learn or to know precisely the query language and the database schema. An ideal query
interface should assume that users may have little technical knowledge and possibly possess no
knowledge concerning the schema of the database. Many current and future applications of

DBMSs, e.g., scientific computing and decision support, require user interaction based on many

106




ad-hoc queries, instead of the conventional invocations of pre-compiled and stored application
programs. As database schemas become larger and more complex, there is a need to develop an
intelligent, high-level query interface to allow users to specify queries by high-level concepts' and
constraints.

The universal relation model [UlI88, Var88] based on the uniqueness assumption of relation-
ships attempts to relieve users of the burden of specifying joins. But it does not allow arbitrary
user-defined concepts in its model, thus limiting its applicability [Cod88). The maximal object
theory used to derive tree schemas from a cyclic schema also has limited applicability.

Wald and Sorenson [WS84] formalized the query completion problem as a Steiner Tree prob-
lem, and presented a search algorithm for partial 2-tree graphs. They used a deterministic directed
costs for the edges, such as the cardinality of relationships, to measure the complexity of queries.
Ioannidis and Lashkari [IL94] considered path expression completion in object-oriented queries
with the partial order relationship between different paths for ranking. All these query formula-
tion methods can only generate simple queries. Therefore, we propose to use a semantic query
graph which represents a more general approach in query formulation

The semantic graph, which models the objects in the database and user-defined relationships,

_can be semi-automatically generated from a database schema with user-defined relationships aug-
mented by domain knowledge. Based on graph search methods, queries can be formulated by
finding a path in the semantic graph which encompasses the query input given by the user. Since
it is possible to have multiple paths given a set of partial input information, the system ranks the
multiple paths based on the amount of information present in the nodes and links of the path.

Our proposed query formulation technique has several unique features. First, it allows user-
defined relationships incorporated into the graph. Second, it does not have specific limitations
on the graph structui'e, as required in [WS84]. Third, a probabilistic information measure is used
for query ranking. Finally, Englisp-like query descriptions can be generated for resolving query
ambiguity.

The rest of the paper is organized as follows. A discussion of the semantic graph is given in
section 2. Section 3 descr bes query formulation from high-level concepts, anc se~tion 4 describes
a multimodal user interface to the system. Implementation and experience are presented in

Section 5. Finally, a conclusion is presented in section 6.
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2 The Semantic Graph Model .

In addition to the typicé.l constructs used to represent entities and relationships in a semantic
model, our semantic graph model contains more information to support user query interfaces and
query formulation mechanisms. The basic constructs of our semantic model are the following: (1)
strong and weak entity types; (2) ISA relationship between entities; (3) HAS relationship between
a strong and a weak entity; (4) Simple link between entities without its own properties; (5) complex
associations between entities with its own properteis; and (6) User-defined relationships between
entities.

To allow semi-automatic generation of semantic graphs from relational schemas and to simplify
the information carried by links. For relational databases, nodes are used to represent relations
and links are used to represent joins.

Formally, a semantic graph for a relational database is a weighted undirected graph G = (V, E),
where each node in the set of nodes V corresponds to a relation, and each link in the set of links
E corresponds to a join between relations of the link’s two end nodes. The joins can be natural
or user-defined. Associated with each node and link is a conceptual term that can be used by
the user to refer to the corresponding elements in the graph. Weights are assigned to the nodes
- and links in accordance with their relative importance, which are used in the query formulation.
Lexical information is used to support English-like query descriptions.

Part of the transportation database semantic graph is shown in Figure 1. It contains informa-
tion about airports, aircrafts, seaports, channels, ships, etc. The link (AIRPORTS) HAVE (RUNWAYS)
is an example of a natural join link, while the link (AIRCRAFTS with AIRFIELD.CHARS) CAN LAND
(on RUNWAYS) is an example of a user-defined link. There are no self-join links in this graph.
Note that the weight of each link is shown aiong the link, which gives a relative measure of the

specificity of the link.

2.1 Semantics of Subgraphs

A link of the sem~utic rraph represents a join. In general, a connected subgraph represents a
relational algebraic expression consisting of a set of joins represenied by tie links. We call a
connected subgraph a guery topic as shown in Figure 2.

For example, in the transportation semantic graph, “CAN LAND” is a link between

AIRCRAFT_AIRFIELD_CHARS and RUNWAYS. It corresponds to a complex join condition:
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Figure 1: Semantic graph for the transportation database.

AIRCRAFT_AIRFIELD_CHARS.PT_MIN_AVG_LAND_DIST_FT <=
- RUNWAYS .RUNWAY_LENGTH_FT
AND AIRCRAFT_AIRFIELD_CHARS.PT_MIN_RUNWAY_WIDTH_FT <=
RUNWAYS .RUNWAY_WIDTH_FT

The result of the algebraic expression evaluated against the database will be all the tuples con-
taining information of an aircraft type and a runway such that the aircraft satisfies the runway
length and width for landing.

When an algebraic query expression corresponding to a query topic is evaluated against the
database, each of the resulting tuples will contain information about the airfield characteristics
of an aircraft type, a runway, its airport, its geographical location information, and its country
information, such that an aircraft of the aircraft type can land on the runway of the airport at
the geographical location of the country (see Figure 2).

Users are usually only interested in a subset of the tuples generated from the evaluation of
a query topic by imposing selection conditions (i.e. constraints) on the topic. For example, the
user can specify the aircraft type to be “C-5”, and the country to be “Tunisia”. We call these

query constraints on the query topic.
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Figure 2: A query topic for “aircraft can land on airports at geographical locations of countries”.

LOCATED

A query aspect of a query topic is a list of attributes (and their expressions) that are contained
in the nodes of the query topic. A query aspect corresponds to the select list of an SQL query or
the projection part of an algebraic expression. The query topic, constraints, and aspect together

can be converted into an algebraic query expression.

2.2 Semi-automatic Generation of Semantic Graph

In current database systems, after a semantic model is converted into relations, it is no longer
stored in the data model (i.e. the schema). Thus we have to use reverse engineering{CBSM] to
reconstruct the semantic model from a database schema. However, the mapping from a relational
model to the extended entity-relationship (EER) model [TYF86] is not one-to-one. Therefore,
in general human intervention is needed to construct the semantic model from the corresponding
database schema. |

With our simplified definition, an initial semantic graph model can be automatically generated
based on all the natural join links between relations. User-defined links can then be added. Other
information, such as conceptual terms, can be assigned to the nodes and links.

A natural join between two relations usually represents a relationship through a key and a
foreign key!. If the same names are used for attributes referring to the same domain, natural
join links between relations in a database schema can be automatically generated based on the
corresponding key attribute names. However, the same attribute name may refer to different
domains, and two different attrit;utes may refer to the same domain. To accommodate this
situation, when checking if a key of a relation appears in another relation as a foreign key, we
use domain names instead of attribute names. The domain names have to be provided by the
designers.

To allow self-joins to the same relation, a relation is duplicated if the key is used within the

1To avoid an excessive number of links being generated, the links are limited to natural joins between a key and

a foreign key and a link is not generated for a join between two foreign keys.
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same relation. This will ensure that one of the self-join relationships can be found. If more than
one such recursive relationship exists, manual editing is required to add more links.

To generate all the links with natural joins as their conditions, we find all the natural joins
between pairs of nodes for a given array of relation nodes. The time complexity of the algorithm
is O(kmn?), where k is the maximum number of keys in a relation, m is the maximum number
of attributes in a relation, and n is the number of relations, including the duplicates.

For example, consider the following three relations:

AIRPORTS( APORT_NM, ELEV_FT, GEOLOC_TYPE, GLC_CD, HARDSTANDS,
HNS_SORTIES, MAX_SORTIES, MILITARY_CIVILIAN_FLAG,
PARKING_SQ_FT, POL_BBLS, SECONDARY_NM, STATUS_FLAG ),
KEY ( APORT_NM )

RUNWAYS( APORT_NM, GLC_CD, RUNWAY_LENGTH_FT, RUNWAY_NM,
RUNWAY_WIDTH_FT, SURFACE_FLAG ),
KEY ( APORT_NM, RUNWAY_NM )

GEOLOC( CIVIL_AVIATION_CD, CY_CD, GLC_CD, GLC_LNCN, GLC_LOG_RGN_CD,
GLC_LTCN, GLC_NM, GSA_CITY_CD, GSA_COUNTY_CD, GSA_STATE_CD,
INSTLN_TYP_CD, LATITUDE, LONGITUDE, PRIME_GLC_CD,
PROVINCE_CD, RECORD_OWNER_UIC ),

KEY ( GLC_CD )

According to the key and foreign key relationships, we can find the following three natural join

links.
1. AIRPORTS and RUNWAYS, linked by APORT_NM.
2. AIRPORTS and GEOLOC, linked by GLC_CD.
3. RUNWAYS and GEOLOC, linked by GLC_CD.

Since GLC.CD is a foreign key in both AIRPORTS and RUNWAYS, a link between these two relations

by GLC_CD is not generated.
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2.3 Weights of Nodes and Links

In the query formulation, multiple queries may be formed for a given user input. The information
[Qui93] of nodes and links is used (expressed in weights) for selecting and ranking query candidates.
The weight for an element e (a node or a link) in a semantic graph measures the information

content of e; that is,

I(e) = —log P(e)

where log denotes the base 2 logarithm, and P(e) is the probability of using e in queries.

The definition is consistent with that used in information theory which represents the number
of bits needed to encode a node or link. The measure reflects the information content of a node
or link. A smaller value of I(e) means a larger P(e), thus e will more likely appear in queries.

For simplicity in computing the information of a subgraph, we assume that all the nodes and
links are independent. For a subgraph with a set of elements (nodes and links) E = {e;|i =

1,...,n}, the independence assumption implies that the information measure is additive, that is,
n
P(E) = P({eili =1,...,n}) = [] P(es).
i=1

Thus

n

1(B) = —log P(E) = ~ log([] P(ex)) = Y_ I(e) ®
i=1

i=1
Weight Update The weights for nodes and links can be approximated by frequency and up-

dated by counting. Let ¢; be the number of times that e; is used in queries, and c be the total

number for all the elements used in a set of queries, then
Ple) == (2)

When element e; is used in a new query, the weights can be updated by incrementing its corre-

sponding count and the total count.

Initial Weight Assignment If a large collection of queries are available at the beginning,
initial counting can be performed. But if the query set is not available or is too small to be
statistically significant, we can assign an equal initial weight to all the nodes and assign weights
to links based on the link types and their specificity. An example of link types and their sample
weights is shown in Table 1. Based on the semantics of the links, in general, the relationships

among the weights are 0 < w; < wp; < w3 < wy < ws < we.
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Link Type Weight

specific-entity ISA generic-entity w =1
strong-entity HAS (PROPERTY) weak-entity | wy = 2
entity ROLEOF association w3 =2

entity LINK entity wy =3

entity USER-DEFINED-ROLEOF association | ws = 3
entity USER-DEFINED-LINK entity wg =4

Table 1: Link types and their corresponding weights in the semantic graph. The numbers are the

sample weights.

Once the initial weights are assigned, they are normalized according to the probability property

(summed to 1), and then converted into initial counts.

3 Formulation of Simple Queries from High-level Concepts

To formulate simple queries without detailed knowledge of a query language or the database
schema, our query formulator only requires users to specify concepts, attributes, and values about
a query. Based on these input, the system constructs the query via the semantic graph.

The query topic is the major source of complexity in formulating a query. The user input con-
tains unconnected nodes and links for constructing a subgraph for the query topic. To formulate
a query, we need to add links and nodes to extend into a subgraph for a query topic.

When the graph is cyclic, multiple links can be connected for the same set of nodes which can
cause query ambiguity. We resolve this problem by (1) ranking the candidate queries based on
their information measure, and (2) generating English-like query descriptions for the candidate

queries to allow the user to select the desired one.

3.1 An Example

The user input consists of three parts: the query aspect which corresponds to the SELECT clause
of an SQL query, the constraints, and special link requirements expressed in conceptual terms.
The user interface then converts the user input into relations, attributes, and links. Consider the
formulation of the query “Find airports in Tunisia that can land a C-5 cargo plane.” The user

input is as follows (see also Figure 6):

113



e query aspect: ATRPORTS.APORT NM;

e constraints: AIRCRAFT_AIRFIELD_CHARS.AC_TYPE NAME = ’C-5’ and
COUNTRY_STATE.CY_NM = ’TUNISIA’;

o links: “CAN LAND”.

The query formulator searches the transportation semantic graph (Figure 1) and adds missing
links and nodes to complete a subgraph. A list of query candidates can be formulated. The

following is the first query candidate?:

SELECT R3.APORT_NM

FROM AIRCRAFT_AIRFIELD_CHARS RO, AIRPORTS R3,
COUNTRY_STATE R10, GEOLOC R11, RUNWAYS R16

WHERE RO.AC_TYPE_NAME = ’C-5’

” AND R10.CY_NM = ’TUNISIA’
AND RO.WT_MIN_AVG_LAND_DIST_FT <= R16.RUNWAY_LENGTH_FT
AND RO.WT_MIN_RUNWAY_WIDTH_FT <= R16.RUNWAY_WIDTH_FT
AND R11.GLC_CD = R3.GLC_CD
AND R3.APORT_NM = R16.APORT_NM
AND R10.CY_CD = R11.CY_CD

3.2 Query Formulation as a Graph Search Problem

Given a user input for query formulation, we can process it into an incomplete query topic T},
an aspect A, and a constraint set S. T contains the links specified in the user input, thé nodes
involved in the links, and the nodes in A and S.

Since Ty is not usually a connected subgraph, we need to choose additional links and relevant

nodes from the semantic graph to extend 77 to form a connected subgraph for the query topic.
We call these links and nodes a query completion candidate for Ty.
Property of a query completion candidate Given a » ::antic graph G = (V, E), to formulate
a query from an incomplete input query topic Ty = (Vi, Er), where Vi CV and E;f C E, is to
find a query completion candidate Tc = (Vg, Ec) for Tt such that query topic T = Ty U T =
(Viu Ve, Er U E¢g) is a connected subgraph of G, where Vo CV, Ec CE, VeNV; =0, and
EcNE =0,

2The aliases for the relations in the query are node IDs in the semantic graph.
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If the semantic graph is cyclic, there can exist more than one query completion candidate
for the same input. We propose to use the following minimum missing information brinciple for
ranking the candidates. '
Minimum Missing Information (MMI) Principle The query completion candidate Tc (the
missing links and nodes) for an incomplete input topic Tt contains the minimum information; i.e.
min I (T¢).

Based on equation 1, I(T¢) can be computed from the information (weight) of the nodes and

links as follows. _
I(Tc)= Y Iw)+ Y Ie) (3)

veVe ecEq
Thus the MMI principle provides us the measure for ranking the query completion candidates.

The smaller the I(T¢), the more likely the completion candidate will meet the user’s query
intention. Links and nodes of smaller weights have a higher probability of being used in queries.
Therefore they are the more likely candidates to be the intended query. Due to the independence
assumption, the probability value used in the ranking is an approximation. Thus we use a set of
completion candidates and let the user select one.

Based on the MMI principle, the end points in the completed subgraph are from the user input.
Deleting any end node that is not in the input will reduce the information of the completion
candidate without affecting the connectivity. Thus, our MMI principle is consistent with the
formulation of the query completion problem as a Steiner Tree problem [WS84]. According to

[WS84, HR92], query completion as a graph search problem is NP-complete.

3.3 Algorithm for Searching Query Completion Candidates

A user input contains a query aspect, a constraint set, and a link set. The required pre-processing
for the input is to extract all the nodes that appear in the aspect and constraints. The nodes
together with links from the input form the incomplete input query topic Ty for searching the
query completion candidate T¢.

The high-level query formulation procedure is illustrated in Figure 3. The incomplete input
topic is decomposed into a set of connected components. The process of finding a completion
candidate is to repeatedly connect two components via a path and form into a larger component.
This merging process terminates until reduced to a single component. We use the following two

methods to limit the search scope:
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e L-step-bound paths: paths that connect two components bounded by at most [ links. This

confines the search to a small area surrounding the input subgraph.

¢ K-minimum completion candidates: only a maximum of k candidates with minimum weights
are used in the search process. This further trims the search within the set of candidate

paths.

L-step-bound Paths L-step-bound paths are used to limit the search within the neighborhood
of the input subgraph. This is based on the observation that each query topic will only span a
small region of the semantic graph. L-step bound paths eliminate the long paths for connecting
components. L-step-bound paths are found through a breadth-first search. Paths with ! links
that have not yet reached a destination node are dropped.

The worst-case time complexity for finding I-step-bound paths with n components is O(n?mat),
where m is the maximum number of nodes in a component and a is the maximum number of links

connected to a node.

K-minimum Completion Candidates During the search for completion candidates, a-g
pruning is used to trim the search branches. If a partial completion has a larger weighf than
the maximum weight of the current k-minimum completion candidates, this partial completion is
excluded from further search.

For the current component list, the algorithm repeats the following process until no more

paths can be tested:

[ay

. Find l-step bound paths for the current component list

2. For each path, merge the two components connected by the path
3. Check if only one component“rema.ins in the list

4. If yes, a completion candidate is found, and go test the next path

5. Otherwise, check if the current partial completion candidate is acceptable for the k-minimum

completions;

6. If yes, go forward with the resultant component list;
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Figure 3: The flow diagram of the query completion procedure.
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Figure 4: Initial components and 2-step-bound paths for the “CAN LAND” query.

7. If not, test the next path. If no more paths left, go back use previous component list

(backtracking).

A larger I will be used if a completion candidate cannot be found for the current .

The search problem is NP-complete. The worst-case time complexity can grow exponentially
with the size of the graph (assuming P # NP). In most cases, however, the search will touch
~only part of the graph.

For the example query in Section 3.1, we have the initial components and 2-step-bound paths
as in Figure 4. We found 2-minimum completion candidates based on the 2-step-bound paths.
The first contains paths (3) and (6) with an additional node GEOLOC, and the second contains paths
(3) and (5) with the same additional node GEOLOC. After converting to SQL, the first completion

condidate yields the query as shown in Section 3.1.

Correctness of the Query Completion Algorithm The k-minimum completion algorithm
performs an exhaustive search with a-8 pruning, which is equivalent to the exhaustive search.
The query completion algorithm w}ll find k-minimum completion candidates, as long as the algo-
rithm for I-step-bound paths does not miss any paths that qualify in the k-minimum completion
candidates.

Using I-minimum weight paths requires a depth-first search in the semantic graph which is not
locally bounded. Therefore, l-step-bound paths are used which requires only a breadth-first search
with a definite bound. For a reasonably large !, I-step-bound paths yield all possibly qualifying

paths and ensure obtaining k-minimum completion candidates.
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(? NAME)

(NAME = Turisia’)
Figure 5: The “CAN LAND” query in the graph form for English-like query description.

3.4 Generating English-like Query Descriptions for Disambiguation

When there are multiple sets of links connecting the components of the incomplete input query
topic, multiple queries can be generated which yield different answers, although sometimes they
may be equivalent. Thus our system provides English-like query descriptions for the user to select
one of the candidate queries that satisfies his query goal.

English-like query descriptions cannot be easily generated from SQL queries because of the
lack of semantic information. However, the query representation based on the sem#ntic graph
can be used to provide such semantics. Entity nodes are translated into nouns, and links are
translated into verbs. Nodes for complex associations including links can also Be translated into
verbs. Selection conditions on entity nodes are translated into adjective phrases (modifiers on
nouns), whereas conditions on association nodes are translated into adverbial phrases [Che83].

Lexical formulas are associated with the graph elements. Domain-specific conceptual terms
assigned to relations, attributes, and links can be utilized for the description. The following is

the algorithm to generate English-like que'riy descriptions.k
e Translate the select list items of a relation into “attributel, attribute?, ...of relation”;
e Use one sentence for each link in the quei‘y topic;
e Put the selection constraints, into corresponding sentences as modifiers.
e List the sentences involving relations in the query aspect first.

We use the above algorithm to generate an English-like description for the query example in
Section 3.1. The query in a graph form including the topic, the constraints, and the aspect is
shown in Figure 5. Its literal translation into English-like sentences is as follows:

“Find NAME of AIRPORTS, WHERE:
AIRPORTS is a GEOLOC:
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GEOLOC is located in. COUNTRY with NAME Tunisia;
AIRPORTS have RUNWAYS;
AIRCRAFTS with TYPE NAME C-5 can land on RUNWAYS.”

3.5 Capabilities of the Query Formulator

To formulate queries containing aggregate functions, a default GROUP BY clause is generated for
queries by putting all the non-aggregate function expressions in the SELECT list into the GROUP
BY clause.

CoBase is a knowledge-based cooperative database system that supports query relaxation to
provide approximate query answers if an exact answer is not available [CMB93]. In connection
with the CoBase system, we include cooperative operators, such as SIMILAR-TO and NEAR-TQ,
and relaxation control in our query language CoSQL [CMB93, CYC™*96].

Using the proposed query formulation technique, we are able to formulate to the SELECT-
PROJECT-JOIN type of queries, with or without aggregate functions, as well as CoSQL queries.

Performance tests were conducted on the transportation database schema fo; the accuracy and
search time on a Sun Ultrasparc IT machine. The graph for the transportation database contains
50 nodes and 105 links. For 30 random query samples, all the first query candidate are correct for
tree queries. The formulation search time ranges fro.m 84 milliseconds to 871 milliseconds, with

an average time of 323 milliseconds, which is well below the query execution time.

4 Multimoclllal User Interface

The usability of a query formulation system depends heavily on the user interface. Since the goal
of the system is to facilitate query formulation, the user must be able to express the criteria of
the desired information to the system in an easy and efficient manner. We present a multimodal

user interface which accepts input through voice and point-and-click devices (e.g., the mouse).

4.1 Point-and-Click interface

The main goal of query formulation is to ease the process of constructing queries such that users
are not required to have detailed knowledge of any query language nor the database schema. The
user only has to input the query aspect (the SELECT clause of an SQL query), the constraints,

and specific link requirements, then the system attémpts to complete the query for the user. A
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point-and-click user interface provides a simple and efficient way for users to input the desired
information to the system. Also, it allows users to interact with the system during the query
formulation process. ‘

To formulate the “CAN LAND” query in example 1, the user has to do the following steps. First
the user chooses the relevant subjects from a list of query subjects (e.g. aircraft, airports, seaports,
country, ships, etc.) provided by the system. In this example, the subjects: aircraft, airports and
country will be selected. The system will then present the user with concepts (tables) under
these subjects and a list of attributes for the selected tables. The user has to select the query
aspect, which are the attributes he wishes to see in the answer set. Then the user has to specify
the attribute values, which corresponds to the query constraints. Based on the partial query
input, the system will find a set of relevant user-defined links, such as “can land”, “repair”,
and “authorization”. The user-defined links can be added to the semantic graph by domain
experts or the user through an interface provided by the graphical user interface. The system
presents these links to the user and the user selects the user-defined link that applies. For this
example, “can land” would then be selected from the list. Now, the input process is complete
and the user can choose to have the system formulate the query.

To formulate a query with the specified concepts, the system needs to link these concepts by
JOINs. This corresponds to finding a connected subgraph (the query topic graph) in the semantic
graph. In this example, the high-level concept “can land” refers to the rule that specifies the

landing requirement of an aircraft:

AIRCRAFT_AIRFIELD_CHARS.PT_MIN_AVG_LAND_DIST_FT <= RUNWAYS .RUNWAY_LENGTH_FT
AND AIRCRAFT_AIRFIELD_CHARS.PT_MIN_RUNWAY_WIDTH_FT <= RUNWAYS .RUNWAY_WIDTH_FT.

Since multiple subgraphs can be generated based on the same input, it is possible for the
system to return multiple completed queries. In order to resolve the ambiguity, the system needs
to interact with the user. The system has to present each query candidate as an English-like
description to the user to allow him to select the desired query.

The user interface is mainly menu-driven with very minimal typing required (only when the
user has to specify a value). This type of point-and-click interface not only réduces the time in

entefing a query, but also reduces the chance of typing errors.
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Figure 6: Dialogue between user and system in formulating the query “Find airports in Tunisia

that can land a C-5.”

4.2 CoSQL Operators in Query Constraints

In addition to supporting relational databases, the query formulator is capable of formulating
Coopertive SQL (CoSQL) [CYC*96] queries to support cooperative database (CoBase) [CMB93].
Thus, our user interface allows users to specify cooperative operators, such as SIMILAR-TO,
NEAR-TO and APPROXIMATE in the query constraints. Users can also specify relaxation
control operators such as RELAX- ORDER and NOT-RELAXABLE in their input. For each
query constraint, the user has to choose a concept (table), an attribute, an operator (=,>,<,>=
,<=) and/or any CoSQL operators from the system provided menus. Then the user can type in
the value for that particular attribute. If the user wants to specify the constraint, runway length
greater than approximately 8000 feet, then the user selects the concept RUNWAY, the attribute
RUNWAY_LENGTH, the operator>, the CoSQL operator APPROXIMATE and then type in the
value 8000. If the user wants to further specify this condition as a NOT-RELAXABLE condition,
the user simply has to select this condition and click on the NOT-RELAXABLE button to make

this condition not relaxable for the CoBase system.
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4.3 Map Interface

Another aspect of this point-and-click user interface is that it is integrated with a map server to
allow users to specify geographical constraints to the query by drawing a region on the map. It
also allows users to visualize the relaxation process and view answers to the query on the map.
When the user is interested in asking a map query, he first selects a region on the map, then he
goes through the query formulation input process. When the system attempts to complete the
query, it will take the geographical constraints specified by the user and based on the context of
the user input, it will automatically figure out the appropriate JOINs to add for the geographical
conditions. For example, the user can add a geographical constraint to the “CAN LAND” query in
example 1. The user may want to find airports that can land a C-5 aircraft only in the southern
part of Tunisia. In this case, the user can draw a region in the southern part of Tunisia and then
tprovide the rest of the input to the system as described earlier. Based on the relations specified by
the user in the query aspect and constraints (AIRPORTS, AIRCRAFT_AIRFIELD_CHARS and
COUNTRY_STATE), the formulator chooses the GEOLOC relation to obtain the latitude and
longitude information for the drawn region on the map for this particular query. The necessary
JOIN conditions are added in by the formulator and the completed query is submitted to CoBase.
If there is no airport in the specified region that can land a C-5 aircraft, the CoBase system will
enlarge the region and try to find an airport nearby that satisfies the requirements for landing a
C-5. When the system locates such an airport, the relaxed region as well as the airport will be

displayed on the map as shown in Figure 7.

4.4 Voice

Voice as an input medium for information systems is useful in environments where the user is
unable to conveniently use other input devices such as the keyboard or mouse. Voice will also
become more and more useful as computer units become smaller, where a full-sized keyboard is
not a feasible input option. Users tend to use natural language when speaking to a computer,
and thus, a voice interfa~e must possess some measure ot uatural language understanding. Our
voice interface will limit the domain of natural language that needs to be understood to allow the
problem to be more feasible. It will be assumed that the user’s requests for information always
pertains to the data captured in the database. The goal of the voice system is to capture enough

semantics from the user’s input to piece together a possible query topic from the semantic graph.
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Figure 7: A geo-spatial query “Find airports that can land C-5 in the region specified on the
map.” The region in the map is sketched by the user. The results (airport locations) are also
displayed on the map. Information of a specific airport can be retrieved by clicking on the airport

icon.

The techniques used to do this will include keyword spotting and word occurrence statistics based
on n-grams. This section will also describe how the semantic graph can be used to produce an

English-like response which can be displayed as text or read back using a voice synthesizer.

4.4.1 Using the Semantic Graph for Language Understanding

The meaning of a user’s request in a database domain is a query in a formal query language. Since
the query formulator needs the query topic and aspect to generate an SQL query, the goal of the
language understanding module is to obtain a query topic and aspect from natural la.ngué,ge.

To obtain the meaning of the user’s request for information, the system searches for keywords
which are clues in determining the meaning of the input. In our system, keywords come from
two major sources: the semantic graph and the database values. The names of the nodes and
attributes in the semantic graph are valuable keywords which represent all the objects within the
database domain. Since we are assuming that the user’. - :quest pertains to the objects in the
database domain, these are the only objects that will be referred to by the user. This limits the
nouns which are allowed by the system. Other syntactic constructs such as verbs, prepositions,
and their corresponding phrases are assumed to describe the relationship between nouns. Thus,
by spotting out the names of the nodes and/or attributes in a user’s request, the system can

determine which nodes and attributes will participate in the query topic and aspect.
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Aircraft_Type="C-5"  (? Airport_Name) Country_name = Tunisia
Figure 8: Augmented Query Topic for Natural Language Interface

As an example, consider the following request: “Find me an airport in Tunisia that can land
a C-5.” The request mentions aifport, Tunisia, can land, and C-5. These keywords and phrases
are mapped onto their corresponding components in the semantic graph. These components
correspond to an incomplete query topic, which will be used by the high-level query formulator
to formulate a query. Figure 8 shows the completed query topic which corresponds to the user’s
request. The query topic in the figure has been augmented with attribute nodes and attribute
names.

The translation from a natural language request to a query topic is not so straightforward
in general because of ambiguity. To help alleviate the ambiguity problem, the system takes
advantage of constraints imposed by the database and by the semantic model. The query topic
is used to narrow down the scope of possibilities. Using just constraints, however, often does
not fully disambiguate a keyword, and statistical methods are used to make a best guess based
on probabilities computed using past cases. A detailed description of the statistical method is
beyond the scope of this paper.

Thus far, we have described how the query topic is obtained from the user’s input, but we
have not determined how the query aspect can be obtained. In the simple case, the attributes
in the query aspect are explicitly mentioned in the user’s request. For instance, “Find me the
runway length of Bizerte airport”, has the attribute runway length as its aspect, which is explicitly
mentioned. More difficult cases include implicit aspect attributes and wh-questions. Implicit
aspect attributes are those which are taken for granted by the user. An example of this is, “Find
me an airport in Tunisia.” In this request, the actual aspect attribute is not mentioned, but the
system should know that the user is looking for a uniciue identifier for the node airport, which in
our database, is the airport name. A wh-question begins with who, what, where, why, when or
how. Usually, the user is seeking a specific aspect and the system must be able to determine the
appropriate attribute based on the wh-word and the rest of the sentence. For instance, “Where

is Bizerte airport?”, should return a latitude and longitude pair. To do this, the system must
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understand that where refers to a location. Since airport is the only node mentioned in the request,

the system must conclude that the location of an airport is being sought.

4.4.2 Response Generation Using the Semantic Graph

After a query is processed by the CoBase system, responses are returned in the form of a set of
tuples that meet the query constraints. This form of answer is good in a command-line system,
but is insufficient when dealing with a voice interface. It is desirable to have responses in the form
of English-like sentences, which could be displayed on the screen or could be read back using a
voice synthesizer. The semantic graph can be used to generate such an English-like response.
English-like responses are generated from the semantic graph using the query topic and the
query aspect, if there is one. Similar to generating a query description, we will make use of the
node names, the attribute names and the link labels in the semantic graph to piece together an
English-like response which reflects the user’s original query and the answers obtained, if any.
When answers are returned by CoBase, an English-like response is generated based on the
answers. Given a query aspect, we reiterate the user’s query and add the descriptions of the
answers at the end. For the request “Find me an airport in Tunisia that can land a C-5”, the
response is generated using the query topic in figure 8. If we traverse a path starting from the
node AIRPORT, we get the following response: “Airport has airport name Bizerte at geographical
location in country with country name Tunisia can land aircraft type C-5.” Determining the

ordering of the nodes and links in the response path is an open issue which requires more research.

4.4.3 Comparison to Other Systems

Our technique for translating the user’s input in natural language to its corresponding database
query is based on spotting keywords to map the input onto the semantic graph. This is similar to
pattern matching systems [Wil75], which use templates to match certain patterns of words. The
major disadvantage of pattern matching systems is that they produce very shallow analyses which
may lead to very erroneous interpretations. Because our system maps objects onto the semantic
graph, we can avoid shallow analyses because the meaning is captured and constrained by the
semantics of the database. Other techniques used in natural language interfaces to databases
include syntax-based and semantic grammars [ART95, GBG*96, YP89)]. Both syntax-based and
semantic grammars use context free grammars to produce parses which allow the system to

interpret the user’s input. The advantage of our keyword spotting technique is that we avoid
p P g g
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Figure 9: Query Formulation and Multimodal Interface System Architecture

using rules, which may not be able to scale to large domains, and our language limitation is
mainly due to the terms used in the semantic graph. Because the semantic graph has the facilities
to hold multiple names for nodes and attributes, the coverage of our domain-specific language

may be sufficiently high enough for practical use.

5 Implementation and Experienée

Figure 9 shows the architecture of our query formulation system with a multimodal user interface.
For the voice input, we use IBM’s ViaVoice, a commerical off-the-shelf voice recognizer which
provides a API through which we can obtain useful information such as alternative guesses. The
voice recognizer feeds into the language understanding component which uses the semantic graph
to piece together a query topic and aspect, which is then fed into the query formulator. The
user is also able to use a point-and-click device to designate a region in the map interface. This
information is also used in the query formulation process. The formulated query is given to
CoBase for processing and the answers returned are fed into the response generator. Using the
semantic graph, the response generator produces an English-like response, which is then read
back to the user using IBM’s Virtual Voices. Since voice recognizers still tend to make many
errors, the point-ar.&-click interface is made available to the user to be used in ~onjunction with
the voicé system. For instance, if the voice system detects that it cannot understand what the
user is saying, it may direct the user to use the point-and-click interface.

The query formulator was implemented in Java with three packages for the graph model,

the query representation, and the formulator, with a total of about 50 classes and 7,000 lines
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of code. The formulator was tested on both the Windows NT and Solaris platform using an
Oracle database. The query formulator is JDBC compliant, therefore it can be ported to multii)le
platforms and databases.

The query formulator was tested on a transportation database provided by DARPA. There are
about 300 relations and the largest relation has more than 50,000 tuples. The semantic graph was
automatically generated from the database schema and a domain expert labelled some of the links
with high-level concepts (e.g. 'CAN LAND’). Queries that involve up to 7 relations and contain
multiple query contraints have been successfully formulated by the query formulator. CoSQL
queries that involve coopertive operators like SIMILAR-TO, APPROXIMATE, RELAX-ORDER
and NOT-RELAXABLE were also correctly formulated. To test its extensibility and portability,
we also tested the query formulator on a different domain, a logistics database. The only effort
required to port the query formulator to the logistics domain is the regeneration of the semantic
graph and the relabelling of the links by a domain expert.

Performance tests were conducted on the transportation database schema for accuracy and
search time on a Sun Ultrasparc II machine. The graph for the transportation database contains
50 nodes and 105 links. For 30 random query samples, all the first query candidate are correct for
tree queries. The formulation search time ranges from 84 milliseconds to 871 milliseconds, with
" an average time of 323 milliseconds, which is well below the query execution time.

The query formulator provides a set of APIs that allow other applications to easily interface
with it. We have integrated the query formulator with a point-and-click user interface, a map

interface and a voice input interface.

6 Conclusion

A new approach for query formulation which is based on a semantic graph model is presented.
The query formulation can be viewed as a graph search problem. The search goal is to find
links and nodes from the semantic graph to complete the query and form a conneccted subgraph
from the user inpnit. When multiple queries are formulated from a user input, the user can
resolve such query ambiguity based on ranking and English-like query descciptions. The query
candidates can be ranked based on the information of nodes and links in the subgraph. The
limit the search scope in finding the subgraph from the semantic graph, a heuristic algorithm

was proposed to reduce the search complexities. The query formulator algorithm can formulate
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the SELECT-PROJECT-JOIN queries with aggregate functions as well as CoSQL queries. We

have constructed a prototype system using the above technique with point-and-click and voice

interfaces. The system is currently operating on top of a cooperative database (CoBase) at UCLA

to formulate SQL queries.
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space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, andleobal Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a erad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent infofmation systems

technologies.




